Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вынужденные колебания с произвольной частотой

В предыдущих двух главах рассматривались волны и колебания конструкций, состоящих из распределенных масс и податливостей (жесткостей), без учета демпфирования — важного параметра, характеризующего затухание волн и колебаний. Этот параметр обусловлен внутренним и внешним трением, излучением и другими причинами, вызывающими убывание акустической энергии в рассматриваемой конструкции. Во многих случаях эффекты потерь пренебрежимо малы, по в некоторых случаях пренебрежение ими ведет к большим ошибкам в расчетах. Так, амплитуда вынужденных колебаний на резонансной частоте существенно зависит от потерь (см. рис. 3.14). Так же сильно зависят от потерь и отклики произвольной колебательной системы на кратковременные нагрузки. Вследствие демпфирования часть энергии колеблющейся конструкции превращается в тепло и предоставленные самим себе колебания затухают со временем. Аналогичная картина наблюдается и при распространении волны в среде. Из-за внутренних потерь часть энергии волны идет на нагревание среды и амплитуда волнового движения уменьшается с расстоянием по мере распространения волны.  [c.207]


СИЛ уже не действуют точно в резонанс с собственными колебаниями лопасти вокруг оси ГШ. Поэтому амплитуда вынужденных колебаний получается меньше резонансной, а запаздывание — меньше 90° по азимуту, т. е. пружина уменьшает запаздывание. Относ ГШ или консольная заделка лопасти также увеличивает собственную частоту махового движения. Рассмотрение шарнирного винта с пружинами в ГШ позволяет изучить влияние собственной частоты махового движения в чистом виде , так как наличие пружин никаких других изменений не вводит. Ниже будет рассмотрена схема произвольного несущего винта с частотой v махового движения, причем лопасть аппроксимируется абсолютно жестким телом.  [c.218]

Пусть осциллятор находится в замкнутой полости, заполненной равновесным излучением с температурой Т. Под действием поля излучения со сплошным спектром U T) он совершает вынужденные колебания. Благодаря резонансным свой твам осциллятора эти колебания будут иметь заметно отличную от нуля амплитуду лишь в узкой области частот вблизи собственной частоты осциллятора Шо. При этом поглощаемая осциллятором мощность Р огл может быть выражена через значение спектральной плотности излучения на частоте шо. В динамическом равновесии с излучением поглощаемая мощность Р огл в среднем равна испускаемой осциллятором мощности Р сп, которая, в свою очередь, может быть выражена через среднюю энергию <е) осциллятора при температуре Т. Таким путем можно связать U, XT) со средней энергией <е> теплового возбуждения осциллятора. Последняя вычисляется методами статистической механики. Так как все это справедливо для осциллятора с произвольным значением шо, то такой путь позволяет рассчитать спектральную плотность равновесного излучения на всех частотах.  [c.426]

Члены, содержащие произвольные постоянные Су и С , соответствуют собственным, или свободным колебаниям фундамента частота этих колебаний равна k. Последний член в полученной формуле соответствует вынужденным колебаниям фундамента. Эти вынужденные колебания в свою очередь складываются из двух гармонических колебаний с частотами ш и 2о).  [c.139]

Как уже говорилось в предыдущем параграфе, демпфирование становится исключительно важным в том случае, когда периодические возмущения имеют частоту, близкую к одной из частот собственных колебаний системы со многими степенями свободы. Вопрос об установившихся вынужденных колебаниях систем с двумя степенями свободы исследовался в п. 3.8 с помощью метода передаточных функций. Этот подход может быть легко распространен на системы с п степенями свободы, при этом основные соотношения [см. выражения (3.51) и (3.52) J сохраняют свою форму неизменной. Однако решение в рамках указанного подхода требует обращения матрицы порядка п X п, содержащей комплексные числа. Если собственные значения и собственные векторы системы предварительно были определены тем или иным способом, подходу с использованием передаточных функций лучше предпочесть метод нормальных форм колебаний. Зная частоту изменения возмущений и собственную частоту колебаний системы, можно непосредственным путем определить динамические перемещения по формам колебаний, чьи частоты близки к частоте возмущения. Ниже, будут рассмотрены возмущения, имеющие вид либо одной гармонической функции, либо произвольного вида периодических функций, при этом будет предполагаться, что система имеет либо пропорциональное демпфирование, либо демпфирование по формам колебаний, аналогичное тому, о котором говорилось в предыдущем параграфе.  [c.306]


Мы видели, что свободные колебания в трубе могут происходить только при определенных частотах. Но если на среду оказывать стороннее воздействие, то можно создать в трубе (вынужденное) колебание произвольной частоты. Здесь есть аналогия с сосредоточенными колебательными системами, в которых также частоты собственных колебаний образуют дискретный набор, но которые могут колебаться на любой частоте, если на них воздействовать с силой, имеющей эту частоту. Как и в сосредоточенных системах, при совпадении частоты вынуждающего воздействия с какой-либо собственной частотой трубы возникают резонансные явления.  [c.218]

Нарушение консервативности системы возможно не только за счет рассеяния энергии, но и за счет ее поступления. Примером такой системы с притоком энергии может служить колебательная система, совершающая вынужденные колебания, обусловленные некоторым внешним фактором, именно, возмущающей силой, явно зависящей от времени. Нами было рассмотрено действие силы, являющейся периодической функцией времени, а также действие произвольно изменяющейся силы. Заметим, что силу, действующую по произвольному закону, можно рассматривать как наложение сил с непрерывным распределением частот, т. е. обладающую, как говорят, непрерывным спектром частот. Таким образом, в  [c.137]

Теория этого эффекта обсуждалась многими авторами [14—24]. При классической трактовке вынужденного комбинационного рассеяния как параметрического процесса [25] его можно рассматривать как явление, в значительной мере аналогичное вынужденному рассеянию Мандельштама — Бриллюэна связь между световой волной стоксовой частоты со и оптическими фононами с частотой (Ог1 возникает в поле волны накачки частоты юх, = (0 + и- Основное различие этих явлений состоит в том, что дисперсионные характеристики среды для оптических фононов существенно отличаются от таковых для акустических фононов. Для колебаний типичной молекулярной группы, например СО3 в кальците или С — Н в молекулярных органических жидкостях, ширина соответствующей фононной ветви весьма мала. Поскольку интерес представляют лишь длинноволновые фононы с длиной волны, соответствующей длине волны света, ка < 10 (здесь а — характерный внутриатомный размер), частота сои постоянна при изменении волнового числа в довольно широких пределах. Поэтому закон сохранения импульса при рассеянии на таких оптических фононах выполняется для произвольного направления распространения электромагнитной волны с частотой соз. Дисперсионные характеристики для электромагнитных волн и оптических фононов представлены на фиг, 16. Из-за колебательно-электронного взаимодействия дис-  [c.164]

Рассмотрим малые установпвшпеся вынужденные колебания с произвольной частотой со, которая задается внешним источником (папример, акустическим источником) через давление жидкости  [c.121]

Еслиуои / —действительные числа, ТО у ( , t) в любое время t и на произвольном расстоянии от начала можно изобразить суммарным вектором двух векторов вынужденных колебаний с амплитудами г/о и г/ в начале и конце струны. Величины этих векторов изменяются гармонически с угловой частотой (3 в зависимости от расстояния Е- Их фаза — а или же [+ а (Z — Е)1 изменяется линейно с расстоянием g и частотой а. Оба вектора вращаются с угловой скоростью ю. Проекции векторов г/о, yi, заданные уравнением (4), например на действительную плоскость, определенную осью Е и действительной осью координат, равны сумме обоих векторов, заданных уравнением (8). В результате получаем действительные корни уравнения (3). Из уравнения (8) видно, что пока вынужденные колебания находятся только на одном конце струны, появляются на струне узлы на расстояниях удовлетворяющие условию РЕ = хп (и = 0,1 для уа Ф О, у 1=1=0) или же условию р (Z — Е) = у-я (х = О, 1,  [c.171]

Прежде чем покончить с общей теорией, желательно еще раз подчеркнуть первостепенное значение гармониче-ского типа колебаний в вопросах динамики. Мы видели, что оно является типичным для системы с одной степенью свободы, лишенной трения, или (в более общей форме) для системы, колеблющейся так, как если бы она обладала только одной степенью свободы, как в случае нормального колебания. Гармоническое колебание является также единственным типом вынужденных колебаний, в точности воспроизводимых, в большем или меньшем масштабе, во всех частях системы. Если сила совершенно произвольного характера действует на какую-либо точку системы, то колебания, вызванные ею в других частях системы, как правило, не похожи ни на эту силу, ни друг на друга только в случае периодической силы, зависящей от времени по гармоническому закону, вынужденные колебания в точности подобны друг другу и происходят син-фазно с действующей силой. Далее, оказывается, что при приближении к критической частоте вынуждающая сила создает вынужденные колебания с резко увеличенной амплитудой только в том случае, когда она санш подчиняется простому гармоническому закону или содержит соответственную гармоническую компоненту. Именно эти обстоятельства помогли Гельмгольцу обосновать свою теорию слуха, к которо мы обратимся впоследствии.  [c.74]


Если пьезопластина возбуждается переменным напряжением другой частоты, то после переходного процесса с этой частотой начинаются вынужденные колебания с постоянной амплитудой. Однако амплитуда зависит от частоты (рис. 7.9) при очень малых частотах она практически равна статическому изменению толщины согласно формуле (7.1), которое на рис. 7.9 было произвольно принято равным единице. С повышением частоты до резонансной /г она увеличивается до некоторого максимума, высота которого зависит от коэффициента затухания, и затем снова падает.  [c.152]

Первые два слагаелгых с их произвольными постоянными А ж В представляют свободное колебание типа, разобранного в 5, происходящее с собственной частотой системы п/2п. На него наложено вынужденное колебание , выраженное последним слагаемым. Это—гармоническое колебание частота его равна частоте р/2к  [c.31]

Итак, в прикладных проблемах линейные задачи теории стоячих волн представляют основной интерес. Тем не менее на ряд вопросов линейная теория ответить не может. Например, при настройке системы управления важно знать зависимость частоты колебаний от амплитуды. Иногда полезно знать (с высокой степенью точности) структуру волновой поверхности и т. д. Поэтому нелинейная теория представляет определенный интерес для практики. Однако, как мне кажется, наибольший интерес нелинейная теория стоячих волн имеет для математика. В теории установившихся волн проблема существования решений довольно элементарна. В теории стоячих волн дело обстоит значительно сложнее. Первая работа в этой области была сделана Я. И. Секерж-Зеньковичем (1957), который предложил процедуру последовательных приближений, позволяющую рассчитать нелинейные стоячие волны в безграничной жидкости. Эта задача дает ответ о характере нелинейных волн, возникающих в сосуде, ограниченном вертикальными стенками, в предположении, что глубина сосуда бесконечна. В начале пятидесятых годов ту же проблему для сосудов произвольной формы изучал Н. Н. Моисеев. Колеблющаяся жидкость рассматривалась как некоторая система Ляпунова счетного числа степеней свободы. Была развита теория, в рамках которой удалось рассмотреть как свободные, так и вынужденные колебания. Была построена полная аналогия с колебательной системой Ляпунова конечного числа степеней свободы и показано, что для того, чтобы провести все вычисления, достаточно уметь решать соответствующую линейную задачу. Разумеется, развитая теория позволяла изучать только такие волновые процессы, которые близки к тем, которые описываются линейной теорией. (Полное изложение этой теории нелинейных волн можно найти в монографии Н. Н. Моисеева и А. А. Петрова, 1965.)  [c.64]

Метод разделения переменных для определения собственных частот и форм поперечных колебаний балки с учетом только деформации сдвига, а также для решения задачи о вынужденных колебаниях балки под действием произвольной поперечной нагрузки применил Э. Е. Хачиян [1.79, 1.80]  [c.90]


Смотреть страницы где упоминается термин Вынужденные колебания с произвольной частотой : [c.31]    [c.439]    [c.248]    [c.68]   
Смотреть главы в:

Колебания и волны Лекции  -> Вынужденные колебания с произвольной частотой



ПОИСК



Колебания вынужденные

Произвольный вид

Частота вынужденных колебаний

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте