Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статическое исследование работы оболочки

СТАТИЧЕСКОЕ ИССЛЕДОВАНИЕ РАБОТЫ ОБОЛОЧКИ 1. ВНУТРЕННИЕ УСИЛИЯ И МОМЕНТЫ  [c.85]

Ряд исследований проведен по определению прочности и пластичности элементов при двухосных напряжениях в МВТУ им. Баумана на специальных установках (рис. 16). Установлены важнейшие зависимости конструктивной прочности не только от формы оболочек (цилиндрических, сферических и т. д.) и величин концентраторов, но также от характера кривой диаграммы деформаций на участке предел прочности — сопротивление разрыву. Чем круче поднимается кривая деформаций, тем выше конструктивная прочность элементов при двухосных напряжениях. Напротив, чем ближе отношение От/ов к единице, тем хуже работает элемент в условиях двухосного поля напряжений и тем опаснее для него наличие концентраторов напряжений. В ближайшем будущем будут проведены испытания сварных изделий всевозможных форм, работающих при статических, повторно статических и усталостных нагрузках. Исследование конструктивной прочности под углом зрения хрупких разрушений является одним из важнейших критериев, обеспечивающих надежность работы сварных конструкций в эксплуатации. Чрезвычайно важно при изготовлении сварных конструкций устранить возникновение в них не  [c.139]


Данные по экспериментальным исследованиям статической и динамической устойчивости оболочек, имеющих форму чехлов реактора, в настоящее время в литературе отсутствуют. Из теоретических работ следует отметить статью [1], в которой с применением метода конечных, элементов выполнен анализ динамического отклика шестигранного чехла топливной сборки реактора на быстрых нейтронах с натриевым теплоносителем.  [c.138]

Наиболее опасной областью конструкционных элементов, выполненных в виде многослойных цилиндрических труб, является краевая зона вблизи заделок. Поэтому в первую очередь необходимо определение напряженно-деформированного состояния именно в этих зонах. При изменении температурного поля возникает задача исследования термоупругих краевых эффектов. Заметим, что для многослойных пластин и оболочек при статическом нагружении подробная классификация краевых эффектов проведена в [12]. Интегральный термоупругий краевой эффект в многослойных цилиндрических оболочках изучен в [И]. Вопросы, связанные с краевыми эффектами в многослойных плитах, исследовались также в работах [3, 4, 10].  [c.76]

Статические условия работы оболочек положительной гауссовой кривизны позволяют создавать покрытия более экономичные, чем покрытия в виде оболочек других форм и в виде плоскостных конструкций. Экономическая эффективность таких оболочек связана с более рациональным (с точки зрения работы материала) распределением в них усилий, с возможностью передачи на них значительных сосредоточенных нагрузок, что позволяет крепить подкрановые пути непосредственно к покрытию и тем самым снизить затраты на их устройство, с возможностью совмещения несущих, ограждающих и теплоизолирующих функций покрытия и, наконец, с лучшим использованием площадей и объемов сооружений. Технико-экономические исследования, выполненные Центральным научно-исследовательским институтом промзданий (ЦНИИПромзданий) совместно с другими научно-исследовательскими и проектными организациями, показали, что применение ОПГК вместо типовых плоских конструкций позволяет снизить расход материалов (сталь, бетон) на 20—40%, а затраты на строительство на 10—15%.  [c.55]

Анализу поведения оболочек с большим показателем изменяемости геометрии (гофрированных, с начальными осесимметричными неправильностями) при неизотермическом упругоп.ластическом деформировании и ползучести посвящены работы [2, 3]. Ниже приводятся результаты исследования такой оболочки при длительном статическом нагружении (рис. 8.3). Оболочка изготовлена из алюминиевого сплава В-95 с пределом текучести при температуре 150° С От = 21,1Ъ МПа, нагружена сжимающей осевой силой Р = 41,8 кн (или эквивалентным осевым смещением края А Wj = 0,7 мм), внутренним давлением р = 1,89 МПа и нагревается до температуры t = t г, z) = 150° С за 20 мин. Зависимости механических свойств от температуры, кривые деформирования и ползучести вводились в ЭВМ с использованием кубического сплайна. Аналогичное описание исиользова.лось и для представления исходной и текущих геометрий оболочки. В расчете рассматривался лишь один полугофр с граничными условиями Т = 0. = 0.  [c.163]


Вопрос о влиянии начальных усилий на частоты и формы собственных колебаний конструкций рассматривался и ранее (см., например, [15,34,49], Исследовались, однако, конкретные конструкции (пластинки, оболочки определенной формы и т.п.). Влияние же начальных перемещений, возникающих при действии статических нагрузок, на динамические, характеристики тонкостенных конструкций практически не изучено. В первой главе выведены уравнения, пригодные для расчета частот и форм собственных колебаний конструкций любых типов (одно-, двух- и трехмерных) с учетом их напряженно-деформированного состояния (уравнение (1.63)). Ния рассматривается реализация этого уравнения для пространственных тонкостенных подкрепленных конструкций произвольной конфигурацтаК Класс тонкостенных конструкций выбран по той причине, что именно в h№ i как следует из предшествующих исследований (см. цитированные выШ работы), влияние стагических нагрузок оказывается наиболее значительным.  [c.122]

На втором этапе каким-либо численным методом интегрируют уравнения движения деформируемой конструкции с начальным прогибом при заданной внешней подвижной нагрузке. Многочисленные результаты решений и экспериментальных исследований несущей способности и динамической устойчивости замкнутых цилиндрических и конических оболочек, а также 1шастин и панелей при действии на них ударных волн с различной ориентацией фронта приведены в работах [16, 37]. В ряде случаев граница устойчивости достаточно хорошо описывается выражением вида (7.7.4). Например, при действии волны давления на коническую оболочку (фронт волны перемещается параллельно оси конуса) одна из асимптот гиперболь соответствует статическому критическому внешнему давлению найденному для цилиндрической оболочки с радиусом, равным среднему радиусу усеченной концческой оболочки, и длиной, равной длине образующей конуса. Другая асимптота  [c.516]

История вопроса, насыщенная дискуссиями и порой драматическая, восходит, конечно, к классическим трудам Л. Эйлера [331 ] о выпучивании упругих сжатых стержней. В фундаментальных монографиях и обзорных работах [4, 46, 51, 52, 60, 85, 103, 104, 116, 130, 134, 189, 194, 204, 206, 222, 240,265, 300, 311, 321] можно найти сведения об эвлюции взглядов на проблему устойчивости, обсуждение различных подходов к постановке задачи — статического, энергетического, метода неидеальностей, динамического метода и областей их применимости, сопоставление экспериментальных и расчетных теоретических результатов, обсуждение путей дальнейшего развития теории и т.д. Следует отметить, что большинство глубоких результатов в задаче устойчивости относится к однородным изотропным оболочкам и получено в рамках гипотезы недеформируемых нормалей. Несмотря на значительные достижения [52, 60, 117, 265 и др. ], задача устойчивости слоистых анизотропных композитных оболочек с ограниченной поперечной сдвиговой жесткостью разработана с меньшей полнотой и требует дальнейших исследований.  [c.59]

В 1971 году в издательстве Наука вышел в свет сборник оригинальных работ Степана Прокофьевича Тимошенко Устойчивость стержней, пластин и оболочек , который был полностью просмотрен и одобрен автором. В этом сборнике дан был очерк жизни и научного творчества С. П. Тимошенко. Предлагаемый вниманию читателей сборник также был просмотрен автором и составлен согласно его желанию, хотя и выходит он уже после смерти С. П. Тимошенко, произошедшей 29 мая 1972 года в городе Вуппертале (Федеративная Республика Германия) на девяносто четвертом году жизни. Здесь содержатся двадцать шесть оригинальных работ С. П. Тимсшечко по проблемам прочности и колебаний элементов конструкции. Эти исследования посвящены изучению резонансов валов, несуш,их диски, эффективному анализу продольных, крутильных и изгибных колебаний прямых стержней посредством использования энергетического метода и применению общей теории к расчету мостов при воздействии подвижной нагрузки, вычислению напряжений в валах, лопатках и дисках турбомашин, расчету напряжений в рельсе железнодорожной колеи как стержня, лежащего на упругом сплошном основании, при статических и динамических нагружениях. Детально рассмотрены важные вопросы допускаемых напряжений в металлических мостах.  [c.11]


В настоящее время имеется значительное количество работ [1—6], посвященных исследованию динамического поведения сплошных оболочек. В нескольких работах [7, 8] исследуются колебания пластинок с вырезами. Авторами также опубликован обзор статей [9] по статическому и динамическому поведению оболочек с вырезами. Броган и др. [10] использовали метод конечных разностей для решения задачи  [c.258]

Для теоретического исследования был использован конечный элемент, предложенный Олсоном и Линдбергом [12]. Этот выбор объясняется тем, что получающиеся при исследований колебаний цилиндрических оболочек с вырезами системы уравнений, описывающие эти колебания, не могут быть разделены независимо по пространственным переменным г и ф, а поэтому можно использовать лишь цилиндрический обол.очечный элемент, данный в [13], или в [14], или же в [12]. Поскольку применение элементов, предложенных в работах [13] и [14], ограничивалось только исследов анйем статических задач, а использование элемента, данного в работе [12], показало приемлемую точность в решении динамических задач, то последний и был выбран в описываемом исследовании.  [c.259]

В работах Э. И. Григолюка и Ю. В. Липовцева (1965, 1966) был развит статический метод исследования устойчивости вязко-упругих оболочек, основанный на изучении ветвления форм равновесия в процессе ползучести. Так как вследствие ползучести напряженное и деформированное состояние оболочки непрерывно меняется, то в некоторый момент времени исходная форма равновесия оказывается не единственно возможной и появляются смежные формы равновесия, отличные от исходной. Э. И. Григолюком и Ю. В. Липовцевым было показано, что учет ползучести не приводит к принципиальным изменениям тех представлений о понятии устойчивости и методов решения, которые сложились при исследовании устойчивости упругих систем. Меняется и уточняется лишь расчетная схема. Причем эти изменения существенны лишь в той ее части, которая связана с определением напряжений и деформаций исходного состояния системы. Здесь необходимо учитывать возможные отклонения системы от идеального состояния, обусловленные наличием начальных перемещений, особенностями приложения нагрузки и т. д. Уравнения же нейтрального равновесия, записанные относительно мгновенных приращений (вариаций) напряжений и перемещений, имеют тот же вид, что и для упругих систем. При их записи необходимо лишь учитывать те дополнительные деформации и напряжения исходного состояния, которые накапливаются в процессе ползучести.  [c.349]

Конструкции приемных систем. Базой для конструирования приемных систем служат выпускаемые пьезоприемники ПДС-21, хотя возможно использовать И другие виды пьезокерамики. Приемники указанной марки обеспечивают высокую чувствительность порядка 85 мкВ/Па и полосу частот, границы которой далеко выходят за пределы исследований при статической емкости 1600 пФ. При работе в неглубоких, около 150 м, скважинах механическая прочность цилиндров из 11ТС-19 достаточна для противодействия гидростатическому давлению. Для облегчения конструкции приемного устройства, уменьшения его размеров и нагрузки на кабеле цилиндры пьезоприемника могут быть лишены виброзащитной пластмассовой оболочки, несущих конструкций  [c.162]


Смотреть страницы где упоминается термин Статическое исследование работы оболочки : [c.240]   
Смотреть главы в:

Элементы теории оболочек  -> Статическое исследование работы оболочки



ПОИСК



Работа сил в оболочке

Статическое исследование



© 2025 Mash-xxl.info Реклама на сайте