Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения планет в форме Лагранжа

Более серьезные трудности при использовании уравнений движения планет в форме Лагранжа (6.30) возникают в следующем случае.  [c.200]

Решение уравнений движения планет в форме Лагранжа  [c.202]

В качестве иллюстрации рассмотрим планету, движущуюся по невозмущенной гелиоцентрической орбите. В прямоугольной эклиптической системе планета имеет координаты (х, у, г). Предположим, мы хотим получить уравнения движения планеты в форме Лагранжа, используя обобщенные координаты (г, Р, Я), где г — радиус-вектор планеты, р—эклиптическая широта, а Я—эклиптическая долгота. Тогда справедливы соотношения  [c.214]


В важной работе Брауэра [3] показано, что при двукратном интегрировании вероятная ошибка равна 0,1124/г , где п — число шагов (величина ошибки выражена в единицах, соответствующих последней значащей цифре). Так, например, после 100 шагов численного интегрирования уравнений второго порядка, описывающих движение спутника, мы с вероятностью 50% можем ожидать, что ошибка округления будет меньше 112,4. В этой работе также показано, что средние ошибки оскулирующих элементов орбиты, полученных численным интегрированием уравнений движения планет в форме Лагранжа (уравнений первого порядка) или при помощи обычных формул по компонентам х, у, г) и х, у, 2), будут пропорциональны Исключением является средняя орбитальная долгота, для которой средняя ошибка опять-таки пропорциональна га . Правда, следует заметить, что она получается в результате двукратного интегрирования.  [c.224]

УРАВНЕНИЯ ДВИЖЕНИЯ ПЛАНЕТ В ФОРМЕ ЛАГРАНЖА  [c.80]

Скобки Пуассона появляются при выводе уравнений движения планет в форме Лагранжа посредством формул (1) — (3). Так как вообще а = а (а. р), то на основании уравнений (1) имеем  [c.200]

Чтобы составить дифференциальные уравнения движения планеты в цилиндрических координатах, воспользуемся хорошо известными уравнениями Лагранжа второго рода (см., например, книгу Г. Н. Дубошина Небесная механика , 1963), которые запишем в следующей форме  [c.41]

Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]


В обычно применяемых методах определение движения свободной точки в пространстве под влиянием ускоряющих сил состоит в интегрировании трех обыкновенных дифференциальных уравнений второго порядка, а определение движения системы свободных точек, взаимно притягивающихся или отталкивающихся, — в интегрировании системы подобных уравнений, число которых втрое больше числа притягивающихся или отталкивающихся точек, если только мы предварительно не уменьшим это последнее число на единицу, рассматривая только относительные движения. Таким образом, в солнечной системе, если мы рассматриваем только взаимные притяжения Солнца и десяти известных планет [ ], определение движений последних относительно первого при помощи обычных методов сводится к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время, или же, при помощи преобразования Лагранжа, — к интегрированию системы шестидесяти обыкновенных дифференциальных уравнений первого порядка, связывающих время и эллиптические элементы. При помощи этих интегрирований тридцать переменных координат или шестьдесят переменных элементов могут быть найдены, как функции времени. В методе, предложенном в данной работе, задача сводится к отысканию и дифференцированию единственной функции, которая удовлетворяет двум уравнениям в частных производных первого порядка и второй степени подобным же образом всякая другая динамическая задача, относящаяся к движениям (как бы многочисленны они не были) любой системы притягивающихся или отталкивающихся точек (даже если мы предполагаем, что эти точки ограничены какими-либо условиями связи, совместными с законом живой силы), сводится к изучению одной центральной функции, форма которой определяет и характеризует свойства движущейся системы и определяется двумя дифференциальными уравнениями в частных производных первого порядка в сочетании с некоторыми простыми соображениями. Таким образом, по крайней мере интегрирование многих уравнений одного класса заменяется интегрированием двух уравнений другого класса, и даже если считать, что этим не достигается никакого практического облегчения, тем не менее можно получить некое интеллектуальное наслаждение от сведения, пожалуй, самого сложного из всех исследований.  [c.176]

В 1773 г. Лаплас опубликовал теорему, впоследствии уточненную Пуассоном (до второго порядка по возмущающим массам), из которой следовало, что Солнечная система устойчива в том смысле, что движение каждой планеты постоянно ограничено собственным сферическим слоем, причем слои разных планет никогда не пересекаются друг с другом. Другими словами, изменения больших полуосей являются чисто периодическими. Зате.м (в 1784 г.) Лаплас, воспользовавшись уравнениями движения планет в форме Лагранжа, пришел к выводу, что наклонения и эксцентриситеты планетных орбит должны все время оставаться малыми. Свои результаты он получил, учитывая лишь первые и вторые порядки этих малых величин. Американский астроном Саймон Ньюком [23] показал, что если массы всех тел, кроме одного, малы (по сравнению с массой единственного большого тела) и орбиты малых тел имеют малые эксцентриситеты и наклонения, то такая задача п тел имеет решение в виде бесконечных многократных периодических тригонометрических рядов. При этом, однако, оставался решающий вопрос о том, сходятся илн расходятся ряды Ньюкома. Если ряды сходятся, то реальные движения планет должны быть ква-зипериодическпми если они расходятся, то о поведении планетных орбит на больших интервалах времени ничего сказать нельзя.  [c.278]

Это большое преимущество, как, вероятно, и будет признано, примиряет меня с неудобством вводить новую группу орбит и с потерей геометрической простоты, на которую я указывал неудобство заключается в том, что мои орбиты не касаются, а пересекают (хотя под очень маленькими углами) действительные гелиоцентрические орбиты, описанные под действием всех возмущающих сил. Моя новая варьированная орбита любой планеты правильно дает возмущенные гелиоцентрические координаты и вспомогательные величины X, у, 2 при помощи правил невозмущенного движения, но если мы не продифференцируем элементов каждой планеты или не сопоставием орбиты всех планет, то они не дадут правильно тех вспомогательных переменных для возмущенного движения, которые употреблял Лагранж, именно — компонентов гелиоцентрических скоростей. Но алгебраически они были лишь подсказаны формой его первоначальных дифференциальных уравнений, а  [c.768]



Смотреть страницы где упоминается термин Уравнения движения планет в форме Лагранжа : [c.96]    [c.17]   
Смотреть главы в:

Небесная механика  -> Уравнения движения планет в форме Лагранжа



ПОИСК



Движение планет

Лагранжа движения

Лагранжа уравнение движения

Лагранжа форма уравнений движения

Лагранжево движения

Планеты

Уравнения Лагранжа

Уравнения движения планет

Уравнения для в форме Лагранжа

Уравнения для п планет

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте