Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивые н неустойчивые многообразия

Предложение Д4.12. Если х и. z x)—те же точки, что в лемме ДАЛО, тогда устойчивое (неустойчивое) многообразие z(x) является допустимым ( , 7, 1)- ((г, 7, ))-многообразием в окрестности х.  [c.681]

Определения. 1. Надстройка седла (с s-мерным устойчивым и ы-мерным неустойчивым многообразием, s O, u O) над семейством  [c.18]

Бифуркации распада инвариантных торов. Пусть в типичном двупараметрическом семействе С -гладких векторных полей, /г 4, при нулевом значении параметра е предельный цикл теряет устойчивость и рождается устойчивый инвариантный тор. Тогда, как было показано выше, на плоскости параметров существуют резонансные языки, отвечающие наличию у векторного поля невырожденных предельных циклов, лежащих на торе. При этом сам тор является объединением неустойчивых многообразий седловых циклов с устойчивыми циклами.  [c.49]


Вырожденные семейства, найденные численно. Названные семейства соответствуют объединению трех линий, показанных пунктиром на рис. 26. Если А принадлежит линии 1 или 2, то одно из уравнений семейства (11а) имеет сложный цикл (сепаратрисный многоугольник) с четырьмя особыми точками типа седло-узел, причем центральное многообразие одной особой точки является устойчивым (или неустойчивым) многообразием другой (рис. 27а,б). Если А принадлежит кривой 3, то одно из уравнений семейства (Па) имеет сложный цикл с че-  [c.64]

Устойчивые и неустойчивые многообразия неподвижных точек и циклов пересекаются трансверсально.  [c.86]

Напомним, что векторное поле удовлетворяет аксиоме А, если его множество неблуждающих точек гиперболично и в нем плотны периодические траектории поля. Условие сильной трансверсальности состоит в следующем устойчивые и неустойчивые многообразия всех неблуждающих траекторий пересекаются трансверсально. Подробнее о гиперболической теории см. том 2 настоящего издания.  [c.114]

Пусть цикл векторного поля имеет мультипликатор 1 и является седлом по гиперболическим переменным. Тогда ограничение поля на центрально устойчивое (це трально неустойчивое) многообразие имеет цикл типа устойчивый (неустойчивый) узел по гиперболическим переменным. На многообразиях и можно определить, как и выше, сильно устойчивое и сильно неустойчивое слоения, обозначаемые через и  [c.116]

Будем предполагать, что векторное поле, имеющее цикл с мультипликатором 1 и с некомпактным объединением множества гомоклинических траекторий с L, удовлетворяет следующим условиям общности положения его неблуждающее множество состоит из конечного числа гиперболических положений равновесия и гиперболических, кроме L, циклов, чьи устойчивые и неустойчивые многообразия пересекаются трансверсально между собой и с St, SI, Wi, Wl, последние пересекаются трансверсально в каждой точке, не принадлежащей L.  [c.121]

Здесь через и Г обозначены устойчивые и неустойчивые многообразия гиперболических положений равновесия или циклов. Поясним, из-за чего может возникать недостижимость в случае (За) на рис. 44, где изображен диффеоморфизм двумерного диска, имеющий при е=0 неподвижную точку Q с мультипликатором 1, и два седла Qi, Q2, причем Sq трансверсально пересекается с Wq а содержит точку Р простого касания со слоем слое-  [c.123]

В случае (Зс) недостижимость связана с изменением числа вращения на возникшем торе, а в случае (ЗЬ) — с возникновением точек простого касания устойчивых и неустойчивых многообразий гиперболических циклов на бутылке Клейна и далеких положений равновесия или циклов.  [c.124]


Поля V++, V+" имеют седловой предельный цикл с двумерными устойчивым и неустойчивым многообразиями при <0, е>0 соответственно, причем для 1/++ устойчивое и неустойчивое многообразия гомеоморфны цилиндрам (листам Мёбиуса). Никаких неблуждающих траекторий, кроме О и цикла Z.+ (e) при е=5 0 и гомоклинической траектории Г при е—О, поля V++, V+" не имеют.  [c.131]

М 1°. Заменой времени добиваемся равенства Я,= 1 докажем, что а — топологический инвариант. Рассмотрим преобразование монодромии Д гомоклинической траектории седла у. Для этого выберем произвольную точку Рву Q y) достаточно близко к седлу на его устойчивом двумерном многообразии (неустойчивом одномерном многообразии W "). Требования близости формулируются ниже. Многообразие W делит окрестность седла на две части. Ту часть, в которую траектория у входит при t- —оо, обозначим U. Возьмем две трансверсаль-ные гладкие двумерные площадки ГЭР и T 9Q (рис. 48а). Обозначим через Г+ пересечение [/+ПГ. Если площадка Г+. достаточно мала, то определено отображение соответствия Ai точка РбГ+ переходит в конец дуги фазовой кривой рассматри  [c.133]

Модули. В [183] было обнаружено, что топологическая сопряженность диффеоморфизмов с одинаковым геометрическим расположением устойчивых и неустойчивых многообразий влечет за собой условия типа равенства на мультипликаторы периодических траекторий. Точнее, пусть f / )—диффеоморфизм замкнутого многообразия с гиперболическими неподвижными точками р, q (р, q ) типа седло. Пусть Xi(Xi)—наибольшее по модулю собственное значение Df p) Df (p )) из всех собственных значений, меньших по модулю единицы, а V 2( Y2) — наименьшее по модулю собственное значение D/( ) (D/ ( 0) из всех собственных значений, больших по модулю единицы. Предположим, что 2( 2) имеет кратность 1. Тогда [162]  [c.140]

Здесь описывается компонента границы множества систем Морса—Смейла, состоящая из потоков с бесконечным множеством неблуждающих траекторий. Во всех приводимых ниже примерах типичные точки границы недостижимы. Так ли это в общем случае, неизвестно. В частности, неизвестно, верно ли, что в типичном однопараметрическом семействе векторных полей рождению бесконечного неблуждающего множества предшествует одна из бифуркаций, описанных в предыдущих параграфах (появление негиперболической особой точки или цикла, или траекторий, принадлежащих простому касанию либо не-трансверсальному пересечению устойчивого и неустойчивого многообразий особой точки и (или) цикла).  [c.149]

Пример. Рассмотрим гиперболическую особую точку векторного поля в R" с устойчивым многообразием W и неустойчивым 11 . Пересечение М неустойчивого многообразия с некоторой окрестностью особой точки поля является отрицательно инвариантным многообразием. Пусть %i — собственные значения особой точки с отрицательной, а — с положительной вещественной частью. Тогда показатели притяжения к Л1 и сближения на М имеют вид  [c.154]

Смена устойчивости устойчивого предельного цикла на торе — удвоение периода, либо рождение тора. В этом случае существует значение ei8i Те не является гладким, неустойчивое многообразие седлового цикла накручивается на устойчивый цикл, а не гладко примыкает к нему.  [c.161]

Касание неустойчивого многообразия цикла на торе и устойчивого многообразия коразмерности 1 положения равновесия или цикла, лежащего в границе области притяжения Т при е<е.  [c.162]

IV (х) образовано точками у, к-рые ведут себя точно так же, но при 1- — оо. Под действием Т устойчивые многообразия переходят друг в друга T W (x)=iV (T x), то же самое относится к неустойчивым многообразиям.  [c.631]

Локальное устойчивое (неустойчивое) многообразие 126, 128 Малые случайные возмущения 151 Марковское разбиение 144 Мезеровский спектр 138 Мера ги>ббоовска 67  [c.309]

В каждом из главных Zg-эквнвариантных семейств при некоторых значениях параметров, образующих линии на плоскости е, возникают сепаратрисные многоугольники. Сдвиг по фазовым кривым поля семейства за единицу времени приближает -ю степень преобразования монодромии предельного цикла, теряющего устойчивость с прохождением пары мультипликаторов через сильный резонанс. Особым точкам полей семейства соответствуют неподвижные точки -й степени преобразования монодромии и 2я9-периодические циклы периодического уравнения входящим и выходящим сепаратрисам седел — устойчивые и неустойчивые многообразия неподвижных точек. Две сепаратрисы особых точек, раз пересекшись, должны совпадать на всем своем протяжении. Не так обстоит дело с инвариантными кривыми неподвижных точек диффеоморфизмов. Эти кривые пересекаются, вообше говоря, трансверсально, а для диффеомор-  [c.60]


Системы с конечным множеством неблуждаюш,их траекторий, содержаш,ие либо негиперболические неподвижные точки или циклы, либо траектории нетрансверсального пересечения устойчивых и неустойчивых многообразий неподвижных точек или (и) циклов, либо и те, и другие одновременно.  [c.86]

Очевидно, бифуркационное множество содержит векторные поля, имеющие негиперболические особые точки или негипер.-болические циклы, а также векторные поля, имеющие гиперболические особые точки и (или) циклы, чьи устойчивые и неустойчивые многообразия пересекаются нетрансверсально.  [c.87]

Бифуркационные поверхности. Рассмотрим множество всех векторных полей на М, имеющих либо негиперболическую особую точку, либо негнперболический предельный цикл, либо траекторию, принадлежащую нетрансверсальному пересечению устойчивого и неустойчивого многообразия двух гиперболических особых точек или циклов, или точки и цикла.  [c.94]

Заметим, что седловая связка — это траектория, принадлежащая единственно возможному нетрансверсальному пересечению устойчивого и неустойчивого многообразий гиперболических положений равновесия и (или) циклов.  [c.97]

Определение ([180]). Предельный цикл векторного поля с мультипликатором единица называется s-критическим, если либо существует гиперболическое положение равновесия или гиперболический цикл, чье устойчивое или неустойчивое многообразие касается одного из слоев на 5", либо неустойчивое множество цикла касается одного из этих слоев.- В последнем случае объединение гомоклинических траекторий цикла называется s-критическим. Аналогично определяются и-хритические цикл и объединение его гомоклинических траекторий нужно. только заменить S , на 5 и S . Цикл и объединение его гомоклинических траекторий называются критическими, если они S- или ы-критические, и некритическими в противном случае (рис. 42).  [c.116]

Такие ограничительные условия устойчивости связаны с существованием числовых инвариантов топологической эквивалентности — модулей, возникающих при нетрансверсальном пересечении устойчивых и неустойчивых многообразий (см. ниже 6).  [c.126]

В этом параграфе рассматриваются бифуркации векторного поля, лежащего на границе множества систем Морса—Смейла, для которого неблуждающее множество состоит из конечного числа гиперболических положений равновесия и гиперболических циклов, чьи устойчивые и неустойчивые многообразия пересекаются трансверсально по всем траекториям, за исключением одной — простого касания либо квазитрансверсального пересечения.  [c.138]

Векторные поля в с гомоклинической траекторией цикла. Пусть векторное поле ПовС , г>3, в трехмерном пространстве имеет предельный цикл L седлового типа и траекторию T iWlr Wl, принадлежащую простому касанию его устойчивого и неустойчивого многообразий. Тогда у LUT су ще-  [c.142]

Поясним этот результат на примере. Рассмотрим однопараметрическое семейство -диффеоморфизмов /e R2- R2, которое в окрестности Uо неподвижной точки О в начале координат имеет вид (х, у)- Скх, у), 00, y >0, /oP = Q, 5gN, —гомоклинические точки, по которым устойчивое и неустойчивое многообразия точки О имеют простое касание (рис. 52). Пусть Jq dU ,= = (Л, у) л —x j<8o, у <ео , f/o3lTi = (A, 1/) д <81, y — y неустойчивого многообразия J i = О, yi — у I < ej переходит  [c.143]

Бифуркации двумерного тора. Предположим, что поток /с , скажем, при 0 8<е, является системой Морса—Смейла и имеет притягивающий инвариантный двумерный тор Те. Предположим, что при 0 8<е на торе существует глобальная секущая. В этом случае число вращения рационально, на Те имеется четное число предельных циклов, половина из которых устойчивы, половина — неустойчивы (седловые по отношению ко всему фазовому пространству), и Т образован замыканием неустойчивых многообразий этих седловых циклов. Предположим также, что е -бифуркационное значение параметра, и при 8 = 8 осуществляется бифуркация коразмерности 1—одна из рассмотренных выше. Следовательно, это либо бифуркация одного из предельных циклов, лежащих при е<е на Т , либо бифуркация, связанная с образованием гомо- и гетероклиниче-ской траектории на неустойчивом многообразии одного из седловых циклов.  [c.161]

Касание неустойчивого многообразия седлового цикла с устойчивым многообразием того же самого или другого седлового цикла. В первом случае возникает гомоклиническая траектория, и при е>8 —нетривиальное гиперболическое множество, во втором — гетероклиническая траектория, и при е>8 аттрактор уже не является тором.  [c.161]

Для динамич. систем с размерностью фазового пространства, большей двух, устойчивые и неустойчивые многообразия седловых состояний равновесия и (или) седловых предельных циклов наз. многомерными С. или сепаратрисными многообразиями. Многомерные С. могут разделять фазовое пространство на области притяжения разл. аттракторов. Связанные с сепаратрисны-1Ш многообразиями бифуркации могут приводить к возникновению странны.х аттракторов, напр., аттрактор Лоренца рождается в момент, когда неустойчивые С. седла пересекаются устойчивыми сепаратрисными шогообразиями седловых предельных циклов.  [c.487]

Важнейшим инструментом исследования ДС гипербо-лич. типа служат устойчивые и неустойчивые многообразия. Устойчивое многообразие IV x) точки х состоит из всех точек у, для к-рых расстояние между Т х и Т у стремится к нулю при Г-юо, а неустойчивое многообразие  [c.631]


Смотреть страницы где упоминается термин Устойчивые н неустойчивые многообразия : [c.196]    [c.308]    [c.13]    [c.51]    [c.85]    [c.91]    [c.91]    [c.94]    [c.109]    [c.114]    [c.115]    [c.143]    [c.162]    [c.403]    [c.100]    [c.196]    [c.632]   
Смотреть главы в:

Введение в современную теорию динамических систем Ч.1  -> Устойчивые н неустойчивые многообразия



ПОИСК



Многообразие

Многообразие неустойчивое

Многообразие устойчивое

Неустойчивость

Ра неустойчивое

Устойчивость и неустойчивость



© 2025 Mash-xxl.info Реклама на сайте