Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СЕРЫЙ Химический состав — Влияние

Химический состав алюминиевых сплавов серии 2000 приведен в табл. 133, их скорости коррозии н типы коррозия — в табл. 134, коррозионное поведение под напряжением — в табл. 135, влияние экспозиции на механические свойства — в табл. 136.  [c.359]

Химический состав алюминиевых сплавов серии 3000 приводится в табл. 137, их скорости коррозии и типы коррозии —в табл. 138, влияние экспозиции на их механические свойства — в табл. 139.  [c.364]


Химический состав алюминиевых сплавов серии 5000 приведен в табл. 140, их скорости и типы коррозии —в табл. 141, коррозионное поведение под напряжением — в табл. 142 и влияние экспозиции на их механические свойства — в табл. 143.  [c.368]

Химический состав алюминиевых сплавов серии 7000 приведен в табл. 147, их скорости и типы коррозии — в табл. 148, коррозионное поведение под напряжением — в табл. 149 и влияние экспозиции на механические свойства сплавов — в табл. 150.  [c.381]

Химический состав. Влияние углерода, кремния, марганца и серы на скорость распада цементита в первой стадии графитизации показано на фиг. 72—77. Фосфор в белом чугуне (0,1—0,2%) практически не влияет на скорость первой стадии графитизации хром весьма сильно тормозит распад цементита алюминий, медь, никель, кобальт и титан ускоряют распад цементита.  [c.547]

На структуру и свойства серого чугуна существенное влияние оказывают его химический состав и скорость охлаждения отливок в форме. Углерод, кремний и марганец улучшают механические и литейные свойства чугуна. Сера вызывает отбел в тонких частях отливок и снижает жидко-текучесть. Фосфор придает чугуну хрупкость. Поэтому содержание серы и фосфора в сером чугуне должно быть минимальным. Увеличение скорости охлаждения достигается путем уменьшения толщины отливки и увеличения теплопроводности литейной формы. В тонких частях отливки образуется более мелкая структура с повышенным содержанием перлита и мелкими включениями графита, что обеспечивает высокие механические свойства. В толстых частях отливки образуется крупнозернистая структура с малым содержанием перлита и крупными включениями фафита. Механические свойства этих зон низкие.  [c.197]

Химический состав свариваемого металла играет наиболее важную роль в предотвращении возникновения кристаллизационных трещин. Повышение содержания серы в металле шва резко снижает его стойкость против их образования. Уменьшение содержания углерода в свариваемом металле ослабляет отрицательное влияние серы. Марганец в определенной мере также нивелирует ее негативное воздействие.  [c.29]

Химический состав металлов и сплавов регламентируют по ГОСТам и ТУ. Для сталей наиболее важный химический элемент, оказывающий решающее влияние на их свойства — углерод. Чем выше содержание углерода, тем ниже пластические свойства стали и хуже обрабатываемость давлением. Среди сталей наилучшей обрабатываемостью давлением обладают низкоуглеродистые качественные стали, из которых изготовляют тонколистовой холоднокатанный прокат для дальнейшей холодной штамповки. Отрицательное влияние на обрабатываемость давлением оказывают сера и фосфор, содержание которых должно быть ограничено. Так, например, для стали 08Ю, предназначенной для весьма особой вытяжки (ВОСВ, ВОСВ-Т), особо сложной вытяжки (ОСВ) и сложной вытяжки (СВ) в холодном  [c.248]


Химический состав. Прежде всего необходимо знать химический -состав исследуемого металла. При проведении большинства испытаний следует знать содержание не только основных компонентов, но и примесей. Например при изучении коррозии хромоникелевых нержавеющих сталей аустенитного класса часто ограничиваются сведениями о количестве в стали углерода, хрома, никеля и титана, в то время как важно знать количество серы и фосфора, так как колебания в содержании этих примесей оказывают существенное влияние на коррозионную стойкость металла в ряде сред 42].  [c.45]

Решающее влияние на качество непрерывного слитка оказывает р жим вторичного охлаждения — распределение интенсивности охлаждения по длине и периметру непрерывного слитка. Практика непрерывной разливки показывает, что одним из основных дефектов непрерывного слитка являются горячие трещины, в основном связанные с физико-механическими свойствами отливаемой стали при температурах, близких к температуре интервала кристаллизации. В работе [233, с. 5, 145, 212] было установлено, что сильное влияние на эти свойства оказывает химический состав стали. По данным [234], наибольшей склонностью к образованию трещин обладает сталь с 0,16—0,18% С. Отрицательно влияет повышение содержания углерода, серы и фосфора, а также некоторых легирующих элементов.  [c.182]

Большое влияние на технологические свойства и штампуемость стали имеют химический состав, структурная форма углерода, величина и форма зерен феррита, образование полос скольжения при деформировании, При плохом качестве листовой стали при вытяжке наблюдаются разрывы материала в местах наибольшей концентрации неметаллических включений. Для получения хорошей вытяжной способности листовой стали необходимо, чтобы в ней содержалось не более 0,5% марганца, 0,03% кремния, 0,03% серы, 0,02% фосфора, ибо они резко ухудшают ее пластичность.  [c.212]

Следует отметить, что не только химический состав, но и происхождение некоторых пигментов оказывает различное влияние на протекание коррозионных процессов. Например, широко применяемый в качестве пигмента железный сурик, являющийся окисью железа, оказывается нейтральным в отношении коррозии, если он представляет собой ископаемую руду и ускоряет коррозию, если он является огарком сернокислотного производства (серный колчедан, из которого извлечена сера). В зависимости от назначения краски для работы в сухой или влажной среде выбирают соответствующие пигменты.  [c.166]

На степень осадки (высадки) оказывает влияние химический состав. Чем меньше в стали углерода, кремния, марганца, фосфора и серы, тем легче идет технологический процесс высадки. Колебание содержания углерода должно быть минимальным (0,05—0,06%) кремния — не более 0,20%. Содержание марганца в сталях 10—20 не должно превышать 0,5%, а в сталях 25—45 — не более 0,6%. Содержание серы и фосфора допускается не более чем 0,03—0,04%.  [c.182]

Химический состав сплава влияет на процесс кристаллизации, в первую очередь на графитизацию. Некоторые химические элементы (А1, N1, Си, Со) способствуют графитизации, а другие (Сг, Мо) препятствуют графитизации. Некоторые элементы остаются нейтральными по отношению к процессу графитизации. Вводимые в расплав элементы в качестве легирующих добавок могут образовывать растворы с ферритом (N1, Си, Со, А1) или распределяться между ферритом и цементитом (Сг, Мо, V, У), или образовывать новые фазы с углеродом (карбиды), азотом (нитриды), серой (сульфиды), кислородом (оксиды), водородом (гидриды) — это титан (Т1), цирконий Zr), церий (Се), ниобий (N5). На процесс кристаллизации серых чугунов решающее влияние оказывает содержание углерода (С), кремния (51) и марганца (Мп), а также влияет содержание серы (5) и фосфора (Р).  [c.191]

Горячие трещины возникают при температуре, близкой к линии солидуса, в процессе уменьшения объема затвердевающей прослойки жидкого металла, находящейся в замкнутом объеме между уже затвердевшими кристаллами. На процесс образования горячих трещин большое влияние оказывает химический состав металла шва, определяющий свойства жидких прослоек. Для некоторых прослоек рост механической прочности идет медленнее, чем рост напряжений, возникающих от сокращения объема. Это и приводит к образованию горячих трещин. Сера, углерод, кремний и водород способствуют образованию горячих трещин, а марганец повышает стойкость металла к трещинообразованию. Чем больше в металле шва элементов, способствующих образованию легкоплавких эвтектик и химических соединений, располагающихся при кристаллизации по границам зерен и затвердевающих в последнюю очередь, тем больше вероятность образования горячих трещин.  [c.14]


Большое влияние на обрабатываемость сталей оказывает их химический состав. С увеличением в стали содержания углерода повышается ее механическая прочность и соответственно возрастает сопротивление резанию. При обработке заготовки из стали с малым содержанием углерода (0,1—0,25% С) получают большую шероховатость поверхности. Повышение содержания некоторых легирующих элементов (Сг, Мо, V, , Т1) увеличивает прочность стали и ухудшает теплопроводность, что ведет к ухудшению обрабатываемости. Кремний ухудшает обрабатываемость стали вследствие образования силикатных абразивных включений. Повышенное содержание серы и свинца улучшает обрабатываемость стали. Так, стали автоматные (А12, А20 и др.) с повышенным содержанием серы (до 0,15%) обрабатываются лучше, чем малоуглеродистые стали. Свинец улучшает обрабатываемость благодаря смазывающему действию дисперсно распределенных частиц на границах зерен.  [c.70]

При сварке переменным током ввиду частой смены полярности влияние электролиза на химический состав металла шва незначительно. Существенное значение электролиз может иметь лишь при электрошлаковой сварке на постоянном токе. Например, в результате применения постоянного тока при электрошлаковой сварке и электрошлаковом переплаве можно достигнуть очистки металлической ванны от таких нежелательных примесей, как сера или водород.  [c.102]

Химический состав металла шва оказывает большое влияние на коррозионную стойкость сварных соединений. Коррозионно-стойкие стали, даже не подвергнутые специальным видам улучшения — вакуумному, электрошлаковому, плазменно-дуговому и электронно-дуговому переплавам — отличаются высокой чистотой по вредным примесям и хорошо раскислены. В связи с этим одной из важнейших задач является получение сварных швов, приближающихся по составу и свойствам к свариваемому металлу. С этой целью принимают специальные меры по ограничению насыщения сварочной ванны кислородом, серой, фосфором, углеродом, азотом из сварочных материалов и атмосферы. Все это тем более важно, что литой металл шва, как правило, по пластичности, вязкости уступает основному металлу, прошедшему улучшение при металлургическом переделе. Одним из путей повышения качества швов является дополнительное легирование, которое может осуществляться как с помощью присадочного материала, так и с помощью защитных шлаков.  [c.51]

Данными для расчёта шихты являются требуемый химический состав отливок, химический состав шихтовых материалов (чугуна, лома и ферросплавов) и угар элементов при соответствуюш,ем режиме плавки. Для предварительных расчётов можно принять угар кремния 10—15%, марганца — 15— 20%, хрома — 10—20%. Фосфор практически не выгорает. Количество серы увеличивается на 40—50%. Содержание углерода в ваграночном металле при обычных режимах плавки (без применения стали в шихте) приближается к эвтектическому (при этом следует учесть влияние кремния и фосфора на точку эвтектики).  [c.26]

Свинец сурьмянистый — Химический состав 375 Свинцовистая бронза — см. Бронза свинцовистая Свинцовые сплавы — см. Сплавы свинцовые Селен — Свойства 9 — Твердость 70 — Физические константы 40 Семейство актинидов — Свойства 14 Сера — Влияние на свойства стального литья 123  [c.550]

Многочисленными исследованиями [76, 81, 82, 83, 501 установлено, что химический состав металла шва оказывает решающее влияние на состав прослоек и тем самым на стойкость шва против образования горячих трещин. Сера, углерод и другие элементы, образующие прослойки легкоплавких эвтектик, увеличивают склонность металла шва к образованию горячих трещин. Марганец повышает стойкость металла шва против образования горячих трещин, так как марганец связывает серу в тугоплавкое соединение, вследствие чего уменьшается температурный интервал хрупкости.  [c.144]

Исследованиями установлено, что химический состав металла шва оказывает решающее влияние на состав прослоек и тем самым на стойкость шва против образования горячих трещин. Сера, углерод, кремний и водород понижают стойкость против горячих трещин, а марганец, наоборот, увеличивает стойкость против их образования. Таким образом, возникновение горячих трещин зависит от химического состава стали. Образование горячих трещин тем вероятнее, чем больше в металле шва эле-  [c.39]

Дифференцированное изучение влияния элементов на первую и вторую стадии графитизации имеет большое практическое значение. Например, в ряде случаев в тонкой части отливки получается отбел, а в толстой — ферритная основа. В то же время обычно требуется, чтобы металлическая основа серого чугуна во всех сечениях была однородной и, в частности, перлитной. При производстве высокопрочных отливок из перлитного чугуна необходимо подбирать химический состав таким образом, чтобы первая стадия графитизации шла интенсивно во избежание отбеливания даже в быстро охлаждающейся (тонкой) части и чтобы скорость второй стадии графитизации была очень незначительна во избежание образования феррита даже в массивной части отливки. В этом случае структура отливки будет однородно перлитной независимо от различных скоростей охлаждения тонких и толстых сечений.  [c.38]

С повышением твердости и прочности чугуна обрабатываемость его ухудшается. Основное влияние на обрабатываемость стали оказывает химический состав и микроструктура. С повьпиением содержания углерода обрабатываемость стали снижается. Повьпиение содержания серы улучшает ее обрабатываемость. Повышение содержания марганца более 2 % ухудшает обрабатываемость стали.  [c.122]


При плавлении происходит сушка, диссоциация, обжиг, прокалка, спекание, восстановление, обменное взаимодействие, полиморфные превращения и т.д. В некоторых видах плавки могут быть определяющими некоторые из этих процессов. Так, при плавке во взвешенном состоянии в автогенном режиме плавление протекает благодаря теплу окисления сульфидов шихты. При оценке и выборе процесса плавки следует проанализировать состав и свойства проплавляемых материалов с учетом влияния сопутствующих плавке процессов. Взаимодействия, связанные с превращением веществ, входящих в состав шихты, сопровождаются выделением или получением тепла. Количество тепла, необходимого на весь комплекс физико-химических превращений 1 т шихты в процессе плавления, называется теплопотреблением шихты, и определяется алгебраической суммой теплосодержаний исходных и конечных продуктов и тепловых эффектов. Теплопотребление неподготовленной сырой медной шихты составляет 1,26 - 2,09 МДж/кг, подготовленной и обожженной 0,63 - 1,26 МДж/кг. Гранулометрический и химический состав, физические свойства шихты являются одним из критериев выбора способа плавки. Большое количество серы в шихте, измельчение материала благоприятно для автогенных способов плавки во взвешенном состоянии.  [c.12]

Известь обжигается в печах различных типов самые простые из них — напольные периодического действия, ныне уже оставляемые более совершенные — постоянного действия, шахтного типа (см. Печи обжигательные]. Кипелка выходит из обжига в kj -сках белого и серого цвета размером до 20 — 30 см. Род сырья, его физическое состояние и химический состав оказывают влияние на ббльшую или меньшую пористость получаемой кипелки, объемный вес к-рой колеблется от 0,7 до 1,2 и в средних случаях м. б. принят равным 1,0. Содержание в сырье  [c.482]

Химический состав нержавеющих сталей серии A1SI 300 приведен в табл. 115, скорости и типы коррозии — в табл. 116, коррозионное поведение под напряжением — в табл. 117 и влияние экспозиции на их механические свойства — в табл. 118, Коррозионное поведение нержавеющих сталей серии AIS1 300 было очень неустойчивым и непредсказуемым. Они подвергались щелевой, питтинговой и туннельной коррозии в разной степени — от начальных проявлений до сквозных язв и туннелей, распространяющихся вдоль поверхности образцов на расстояние 28 см. Сравнение интенсивностей упомянутых выше типов локальной коррозии с соответствующими скоростями равномерной коррозии не показало наличия между ними определенных корреляций.  [c.313]

Химический состав нерл авеющих сталей серии AISI 400 приведен в табл. 119, скорости и типы коррозии — в табл. 120, коррозионное поведение под напряжением — в табл. 121 и влияние экспозиции на их механические свойства — в табл. 122.  [c.329]

Вредные примеси (сера и фосфор) и растворенные газы (азот и кислород) повышают порог хладноломкости. Однако наибольшее влияние на ударную вязкость стали при минусовых температурах оказывает химический состав. Хорошо сохраняют ударную вязкость в области низких температур стали, легированные 5—6 % никеля. Аустенит-ные хромоникелевые стали и сплавы на никелевой осново весьма пластичны в области очень низких температур. Поэтому ГОСТ 5632—72 допускает, например, поковки из сталей 04Х18Н10 и 08Х18Н12Б к применению в сосудах, работающих под давлением до температуры —269 °С.  [c.207]

Влияние вибрации на интенсивность гидроэрозии металла показано в работе [34], где приведены результаты изучения влияния вибраций на процесс разрушения латуни, серого чугуна и углеродистой стали. Механические свойства исследуемых сплавов указаны в табл. 15. Химический состав указанных материалов отвечал соответствующим ГОСТам. Образцы имели форму пластин 50x75 мм толщиной 3 мм. Все образцы перед испытанием имели приблизительно одинаковую по качеству поверхность.  [c.72]

Термическая устойчивостьВлияние элементов 205, 206 -- Химический состав 206 Чугун серый — Закалка — Влияние температуры на твёрдость 988  [c.1078]

Основное влияние на коэфициент расширения металла ока зыБзет его химический состав. На основании многочисленных исследований установлено, что те элементы, которые благопри- ятствуют выделению графита (кремний, фосфор), уменьшают коэфициент расширения чугуна, а те, которые противодействуют выделению графита (сера, марганец) — повышают его.  [c.273]

Химический состав. В чугуне, кроме углерода, имеются нормальные примеси, обусловленные выплавкой чугуна в доменной печи, а затем в вагранке. К нормальным примесям относятся Мп, 51, Mg, Р и 5. Влияние этих элементов на структуру чугуна в основном определяется их влиянием на графитизацию. По действию на графитизацию обычные примеси располагаются в следующий ряд С, 51, Р, Vg, 5, Мп, причем углерод и кремний усиливают этот процесс, фосфор не оказывает непосредственного влияния, а магний, сера и марганец производят антиграфитизирующее действие. Однако совместное действие всех элементов на графитизацию зависит не только от количества каждого из них, но и от сочетаний их при одновременном. присутствии. Например, сб-  [c.332]

Чугунные изделия имеют разнообразный химический состав и структуру. Разнообразие химического состава и структуры иногда может наблюдаться в различных участках одного и того же изделия. Это происходит в результате того, что более тонкие части чугунных отливок остывают быстрее и в них наблюдается частичный отбел, а более толстые части остывают медленнее и имеют структуру серого чугуна. Наиболее плохо сваривается чугун с крупнозернистой структурой. Чугун с. мелкозернистой структурой сваривается значительно лучше. На структуру чугуна влияет в основном его химический состаз. Элементы, входящие в состав чугуна, оказывают на его свойства различное влияние.  [c.556]

Процесс появления свободного графита в структуре чугунов называют графитизацией. Как видно, графити-зация начинается при кристаллизации и заканчивается ниже Лс1. На процесс графитизации очень большое влияние оказывают химический состав и условия охлаждения. Кремний является элементом, способствующим графитизации, именно поэтому в сером чугуне его содержание составляет не менее 2%. Графитизации не происходит вовсе, если суммарное содержание углерода и кремния мепее 4%. Такие сплавы кристаллизуются с образованием ледебуритной эвтектики (аустенит + цементит) и являются не серым, а белым чугуном. При суммарном содержании углерода и кремния 4—5% гра-фитизация происходит не полностью. Графит выделяется только при эвтектической кристаллизации, а эвтек-тоидный распад аустенита совершается с образованием  [c.193]

Состав шлака оказывает решающее влияние на химический состав получаемого чугуна. Подбором состава шлака можно регулировать состав чугуна. Правильно подобранного состава шлак должен способствовать 1 греходу в чугун нужных элементов и задерживать переход вредных элементов (серы, фосфора и др.).  [c.17]

Сера — вредная примесь, так как с увеличением содержания серы появляется так называемая красноломкость металла, хрупкость в нагретом состоянии. Фосфор также является вредной примесью, потому что повышенное содержание фосфора всегда вызывает холодноломкость стали, т. е. низкую ударную вязкость при обычных и пониженных температурах, и крупнозернистость. При большом количестве углерода вредное влияние фосфора на сталь увеличивается. Химический состав углеродистой стали приведен в табл. 2.  [c.43]

Исследованиями установлено, что химический состав металла шва оказывает решающее влияние на состав прослоек и тем самым на стойкость шва против образования горячих трещин. Сера, углерод, кремний и водород понижают стойкость против горячих трещин, а марганец, наоборот, увеличивает стойкость против трещннообра-зования. Таким образом, возникновение горячих трещин зависит от химического состава стали. Образование горячих грещин тем вероятнее, чем больше в металле шва элементов, способствующих образованию легкоплавких эвтектик и химических соединений, располагающихся при кристаллизации по границам зерен и затвердевающих в последнюю очередь при относительно низких температурах. Это хорошо подтверждается данными о влиянии марганца и углерода на склонность к трещинам, вызываемую серой (фиг. 43). Из графика следует, что повышение содержания серы или углерода в металле увеличивает склонность металла шва к горячим трещинам, повышение содержания марганца уменьшает склонность металла к трещинам, так как марганец связывает серу, и образующийся сульфид марганца Мп5 плохо растворяется в железе и хорошо — в шлаке. Стойкость металла шва к образованию тр.чцин часто называют технологической прочностью.  [c.86]


Влияние кремния. Кремний хорошо растворяется в аустените. При повышенном содержании кре1кния в чугуне уменьшается содержание углерода в ледебурите, аустените и перлите. Кремний влияет на процесс графитизации как структурно-=свободного, так и эвтектоидного цементита, способствует увеличению числа центров графитизации. С увеличением содержания кремния в ковком чугуне ускоряетсй процесс отжига, но при чрезмерно высоком содержании кремния во. время охлаждения отливки вместо белого чугуна получается половинчатый или серый чугун. Следовательно, при назначении количества кремния в чугуне необходимо учитывать химический состав остальных элементов в ковком чугуне и скорость охлаждения отливок (толщину стенок отливок).  [c.328]

Свойства КЧ определяются главным образом его структурой, которая формируется при кристаллизации БЧ и превращениях в твердом состоянии. На структуру чугуна влияют химический состав, условия кристаллизации (скорость охлаждения, температура и др.) и термическая обработка. Значительное влияние на свойства оказьшают число, размер и форма графитовых включений. Способность матрицы КЧ воспринимать нагрузку при равномерном распределении напряжений (за счет компактной формы графита) обусловливает его более высокие механические свойства о , б чем у серого чугуна (СЧ), имеющего аналогичную с КЧ металлическую основу.  [c.677]

На устройстве "ОКА" было проведено исследование влияния цинкового комплексоната ОЭДФ на коррозионную активность вод различного химического состава по отношению к углеродистой стали при бО С. Опыты проводили в растворах следующего состава кальциевая жесткость 1—3 мг-экв/л, щелочность — 1—3 мг-экв/л, хлор-ионы — 50—350 мг/л, сульфат-ионы — 15—100 мг/л. Химический состав указанных растворов является типичным для широкого класса вод с высокой коррозионной активностью, используемых в системах горячего водоснабжения. В качестве ингибитора коррозии добавляли 5 мг/л ЦОЭДФ, а в серии сравнительных опытов — 30—40 мг/л силиката натрия. На устройство "ОКА" проводили также измфение электродного потенциала.  [c.81]

Гавшииа 3. П. Влияние инфильтрации промышленных стоков на химический состав грунтовых вод на территории промышленных предприятий. — В сб. Инженерные изыскания в строительстве, 1973, серия 2, В. 1 (№ 9), 5—12 с.  [c.164]

И 6.7). Для варьирования содержания серы в топливо вводили растворимый в нем третичный додецилмеркаптан. Из табл. 6.8 видно, что соли морской воды, отлагаясь на лопатках, заметно снижают их термостойкость. Степень этого снижения зависит от типа сплава, рабочей температуры и уровня напряжений. Особенно чувствительным к воздействию солей оказался сплав ЭИ868 (рис. 6.7). Воздействие коррозионной среды оказывает в ряде случаев более сильное влияние на термостойкость лопаток, чем их химический состав. Так, в условиях длительной эксплуатации лопаток одной и той же степени ГТУ, изготовленных из разных материалов, трещины на них были обнаружены  [c.425]


Смотреть страницы где упоминается термин СЕРЫЙ Химический состав — Влияние : [c.223]    [c.175]    [c.132]    [c.119]    [c.150]    [c.147]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.0 ]



ПОИСК



Влияние Влияние химического состава

Влияние серы

Влияние состава

Влияние химического состава



© 2025 Mash-xxl.info Реклама на сайте