Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ковкий Конструкционные свойства

Конструкционная сталь должна иметь хорошие технологические свойства хорошо обрабатываться давлением (прокатка, ковка, штамповка и т, д.) и резанием, не образовывать шлифовочных тре-ш,ин, обладать высокой прокаливаемостью и малой склонностью к обезуглероживанию, деформациям и трещинообразованию при закалке и т. д. Строительные конструкционные стали должны хорошо свариваться всеми видами сварки.  [c.249]

Заготовки для деталей из стали указанных групп получают путем проката, ковки или штамповки. Некоторые сведения о механических свойствах и назначении конструкционной стали различных марок приведены в табл. 3.2.  [c.323]


Влияние технологических факторов. Конструкционные стали, из которых изготовляют элементы конструкций, можно получить литьем пли прокаткой, ковкой, штамповкой и волочением. Механические свойства стали одного и того же состава весьма сильно изменяются в зависимости от способа ее получения и обработки.  [c.121]

Для парогенераторов горизонтального типа в качестве материала корпуса широко использовалась известная углеродистая конструкционная сталь 22К, обладающая хорошими технологическими свойствами. Она хорошо поддается ковке, прокатке, штамповке, хорошо сваривается. Опыт эксплуатации парогенераторов показал и ее хорошие эксплуатационные качества. При повышении единичной мощности парогенератора использование этой стали связано с существенным утолщением стенок корпуса. Для снижения массогабаритных характеристик парогенератора может оказаться целесообразным применение более прочных низколегированных сталей перлитного класса.  [c.251]

Многопроходная деформация является основным элементом многих видов термомеханической обработки (прокатки, ковки, волочения и др.). При этом количество проходов и степень деформации за проход связаны не только с технологическими ограничениями процесса передела слитка (или заготовки) в полуфабрикат заданного профиля, но и с задачей получения оптимального комплекса механических свойств в деформированном металле. Однако эта задача решается пока чисто эмпирически из-за недостаточной изученности закономерностей, определяющих формирование дислокационных структур в условиях наложения и многократного повторения процессов деформационного упрочнения и динамического возврата. Необходимость изучения этих закономерностей не требует особого доказательства, достаточно сказать, что большинство конструкционных металлов и сплавов используются в технике в деформированном состоянии, т. е. без конечной рекристаллизационной обработки.  [c.181]

Высокопрочный чугун используют для отливок конструкционного назначения вместо стали и ковкого чугуна. Прочность его при нагреве до 450—500° С снижается медленнее, чем углеродистой стали. Он удовлетворительно обрабатывается резанием легко сваривается с помощью газовой сварки с применением стержней из чугуна, содержащего магний, причем прочность шва не отличается от прочности основного металла. Высокопрочный чугун хорошо воспринимает термическую обработку, которая может в значительных пределах изменять структуру и свойства отливок.  [c.51]


В виде ковкого металлического циркония (99,9 %) как конструкционный материал с ценными механическими, технологическими и антикоррозионными свойствами в производстве радиоламп.  [c.350]

Приводимые ниже данные об этих свойствах получены при исследовании ковки слитков из легированных конструкционных сталей весом в 1 — 3 т.  [c.283]

Области применения. Ковкий чугун как конструкционный материал широко применяют в различных отраслях машиностроения благодаря высоким физико-механическим свойствам отливок, несложной и стабильной технологии их производства и более низкой стоимости по сравнению с отливками из стали, поковками и штамповками. Основным потребителем отливок из ковкого чугуна является автомобиле-и тракторостроение, сельхозмашиностроение и другие отрасли промышленности (табл. 27).  [c.133]

Легированным конструкционным сталям свойственна повышенная анизотропия свойств, т е различие свойств в зависимости от направления деформации при ковке или прокатке Уменьшение анизотропии свойств достигается металлургическими способами (уменьшением в стали сульфидов и других неметаллических включений, изменением условий горячей пластической деформации и др ) Эти же стали чувствительны к флокенам, наиболее чувствительны к образованию флокенов доэвтектоидные легированные перлитные и перлито мартенситные стали (см гл П)  [c.169]

Углеродистые качественные конструкционные стали (ГОСТ 1050—74) применяют для изготовления различных машин и механизмов. От сталей обыкновенного качества они отличаются меньшим содержанием серы, фосфора и других вредны) примесей, более узкими пределами содержания углерода в каждой марке (с учетом допускаемых отклонений по стандарту) и в большинстве случаев более высоким содержанием Si и Мп. Это, а также более тщательная выплавка ают возможность широко применять для изделий из этих сталей различные виды термической и химико-термической обработки и, следовательно, получать широкий диапазон механических свойств, изготовлять изделия не только ковкой и холодной механической обработкой, а также холодной штамповкой, высадкой и др.  [c.86]

Разработка процесса сварки взрывом находится в начальной стадии и поэтому трудно определить области применения этого метода в будущем. Однако уже сейчас сварка взрывом может быть использована при изготовлении заготовок для проката биметалла, плакировке поверхностей конструкционных сталей металлами и сплавами с особыми физическими и химическими свойствами, а также при сварке заготовок и некоторых деталей из разнородных материалов. В последнем случае это потребует разработки специальных технологических процессов. Перспективным представляется сочетание сварки взрывом со штамповкой п ковкой.  [c.33]

Большая часть деталей, изготовленных из чугунов, работает при повышенных температурах. Например, широкое распространение в качестве конструкционного материала теплонапряженных деталей двигателей приобретают чугуны с шаровидной и пластинчатой формой графита. Опыт применения поршней из высокопрочного чугуна ведущих зарубежных фирм убедительно показал преимущества чугунных поршней перед алюминиевыми и составными поршнями в отношении теплоустойчивости, жаростойкости, КПД сгорания, дымления, расхода масла. В связи с высокими теплофизическими характеристиками и прочностными свойствами большой интерес вызывают также ковкие чугуны, основные свойства которых можно изменять методами ТО.  [c.135]

При ковке заготовок из легированных сталей необходимо учитывать наличие в них легирующих элементов, которые в той или иной степени изменяют свойства металла. Легированные стали обладают меньшей теплопроводностью и пластичностью по сравнению с углеродистыми, поэтому они отличаются большей склонностью к образованию трещин и легче подвергаются перегреву и пережогу. В связи с этим температурный режим нагрева их значительно отличается от режима нагрева углеродистых конструкционных сталей.  [c.154]

Титановые сплавы применяют в машиностроении сравнительно недавно, но они заняли видное место как конструкционные материалы при изготовлении ковкой и штамповкой ответственных деталей современных двигателей и летательных аппаратов, в радиоэлектронике и многих других отраслях производства. Уровень потребления и диапазон использования титановых сплавов быстро растет. Они обладают высокими механическими свойствами, теплостойкостью и немагнитностью при относительно малом удельном весе. Титановые сплавы — перспективный конструкционный материал для объектов, монтируемых в межпланетном пространстве, где почти полный вакуум, и сварка, резка, нагрев не потребуют специальной защиты от взаимодействия с возДухом.  [c.277]


Это одно из самых замечательных механических свойств металлов было продемонстрировано нагляднейшим образом рядом исследователей в весьма убедительно поставленных за последние годы экспериментах, где больших остаточных удлинений в металлических монокристаллах удалось достигнуть путем постепенного увеличения растягивающей нагрузки. Применяемые в технике конструкционные металлы с поликристаллической структурой обладают, сверх того, и другими замечательными свойствами. Отметим здесь их способность получать под нагрузкой весьма малую упругую (т. е. обратимую) деформацию до тех пор, пока эта нагрузка не превзойдет некоторой величины, и деформироваться уже необратимо (т. е. пластически) и значительно при дальнейшем возрастании нагрузки. В связи с этой последней характеристикой поликри-сталлических металлов находится и их способность, подвергаться холодной и горячей обработке посредством ковки, гнутья, прессования, волочения, прокатки и т. д. Стали, а также и другие черные и цветные металлы и их сплавы могут подвергаться закалке, причем после закалки пластические деформации возникают в них под значительно более высокими нагрузками, чем до закалки.  [c.11]

Каждый вид металла обладает определенными технологическими свойствами. Например, углеродистая конструкционная сталь обрабатывается резанием легче, чем быстрорежущая или нержавеющая сталь. Чистые металлы обладают большей ковкостью и свариваемостью, чем сплавы металлов, а серый чугун, например, вовсе лишен свойства ковкости. Бронза также обладает плохой ковкостью, поэтому бронзовые детали, как и чугунные, изготовляются отливкой, а не ковкой или штамповкой. Технологические свойства металла определяют путем технологических проб. Пробы делаются на ковкость, свариваемость, прокаливаемость, кручение, гибку и т. п. Технологические свойства являются важным показателем для выбора способа обработки металла и назначения режимов обработки.  [c.15]

ГОСТ 8479—57 Поковки из конструкционной углеродистой и легированной стали устанавливаются общие требования к поковкам, изготовляемым свободной ковкой и горячей штамповкой. В зависимости от назначения поковки по видам испытаний подразделяются на пять групп I группа — поковки, изготовляемые из одной марки стали, поставляются без испытаний II группа — поковки одной марки стали с термообработкой по одинаковому режиму, проходят испытания на твердость в количестве 5% от партии, но не менее 5 шт. III группа — поковки одной марки стали, совместно прошедшие термообработку, испытывается на твердость каждая поковка IV группа — поковки одной плавки и совместной термической обработки, твердость определяется у каждой поковки, а механические свойства от партии V группа— каждая поковка испытывается на механические свойства.  [c.143]

Атомная энергетика. В 1950 г. в связи с развитием атомной энергетики цирконий привлек к себе внимание как возможный конструкционный материал для энергетических ядерных реакторов. Это вызвало организацию промышленного производства ковкого циркония и сплавов на его основе. Ценность циркония как конструкционного материала для атомной техники определяется тем, что цирконий имеет малое сечение захвата тепловых нейтронов ( 0,2 барн), высокую антикоррозионную стойкость, хорошие механические свойства.  [c.277]

Флокены. Ранее неоднократно отмечалось различное влияние газов на свойства сталей, указывалось на их нежелательное присутствие, так как при этом свойства сталей ухудшаются. Так, например, возникает один из дефектов легированных сталей — флокены (трещины, которые можно выявить при макротравлении). На изломах флокены имеют вид блестящих круглых или овальных пятен, являющихся поверхностью трещин. В настоящее время установлено, что флокены образуются при быстром охлаждении металла от 200° С после ковки или прокатки. Их образование происходит вследствие присутствия в металле водорода, растворившегося в жидком металле при плавке. Выделяясь в деформированной стали из твердого раствора, он вызывает сильные внутренние напряжения, приводящие к образованию флоке-нов. Флокены чаще образуются в хромовых и хромоникелевых конструкционных сталях. Для предупреждения их образования после горячей пластической деформации металл охлаждают медленно в области 250—200° С или подвергают выдержке при этих температурах. Это дает возможность водороду удалиться из стали.  [c.291]

Изделия из чугуна получают главным образом путем литья (чугунные отливки), хотя имеются данные о том, что чугуны можно при определенных условиях подвергать горячей обработке давлением, после которой механические свойства чугунов повышаются, приближаясь к свойствам высококачественной углеродистой конструкционной стали. Такие чугуны за границей получили название деформируемых. Ответственные отливки из серых, ковких и высокопрочных чугунов для улучшения механических свойств подвергают термической или химико-термической обработке.  [c.91]

Легированные чугуны могут быть белыми, серыми, высокопрочными и ковкими. По назначению легированные чугуны подразделяют на конструкционные и чугуны с особыми химическими и физическими свойствами (нержавеющие, I жаропрочные, жаростойкие, магнитные, немагнитные, с высоким электрическим сопротивлением, антифрикционные и др.). По х и-1  [c.190]

Сила резания. Экспериментальные зависимости для расчета силы резания при обработке конструкционных и жаропрочных сталей, серого и ковкого чугуна и медных сплавов проходными резцами с ф1 =10° и с дополнительным лезвием с ф1=0°, а также отрезными и прорезными резцами приведены в таблицах 23 и 24. Если механические свойства стали, серого и ковкого чугуна отличаются от приведенных в табл. 24, вводят поправочный коэффициент на качество материала Кмр< вычисляемый по формулам, приведенным в табл. 25. Значения коэффициента Кср> учитывающего влия-  [c.584]


Сварку взрывом используют при изготовлении заготовок для про ката биметалла, плакирования поверхностей конструкционных сталей металлами и сплавами с особыми физическими и химическммй свойствами, при сварке заготовок из разнородных материалов. Целесообразно сочетание сварки взрывом со штамповкой и ковкой  [c.226]

Высокопрочные чугуиы по механическим свойствам превосходят серые II ковкие чугуны и приближаются к углеродистым конструкционным сталям.  [c.170]

Для оценки прочности материалов используется целый комплекс механических характеристик. При выборе стали и других конструкционных материалов должны также учитываться их технологические свойства литейные качества, свариваемость, обрабатываемость резанием, возможность применения ковки и горячей штамповки, возможность применения термического и химико-термического упрочнения поверхности детали (закалки, цементацип, азотирования и пр.), притираемость. При оценке эксплуатационно-физических характеристик учитываются следующие свойства материалов коррозионная стойкость, износостойкость, кавитационно-эрозионная стойкость, отсутствие схватываемости (холодной сваркп) и задиров между сопрягаемыми поверхностями в рабочей среде, а в некоторых случаях учитывается присутствие (или отсутствие) легирующих элементов или компонентов сплава с интенсивной степенью радиоактивности и большим временем полураспада изотопов.  [c.21]

В больщинстве случаев конструкционные углеродистые и низколегированные марки стали обладают как в литом, так и в деформированном состояниях достаточно больщой технологической пластичностью в широком интервале температур. Окончание ковки многих из них может производиться в двухфазном состоянии, пластичность стали в котором также бывает до определенного предела (вполне конкретного для каждой марки стали) достаточной. В связи с этим установление оптимального температурного интервала деформирования таких марок стали представляет большой интерес с точки зрения его влияния на качество, структуру, механические и служебные свойства готового изделия после полного цикла его обработки (нагрев— деформирование — термическая обработка, включая режимы остывания).  [c.26]

Например, конструкционные углеродистые и низколегированные марки стали высокой чистоты, Г ыплавленные в электропечах, при укове более 2 (в особенности после термической обработки) изменяют механические свойства незначительно. Даже при больших уковах в стали с низким содержанием серы и фосфора механические свойства в продольном и поперечном направлениях отличаются друг от друга незначительно, а при ковке армко- хелеза анизотропия свойств при уковах выше 1,5 отсутствует.  [c.57]

Интерес к титану проявился в годы второй мировой во ны, что привело к разработке способа получения ковко титана и его промышленного освоения в 1948—1950 i С этого времени производство и потребление титана непд рывно стало расти. Это вызвано особыми свойствами мета лического титана, как конструкционного материала. Опр деленные ограничения его применения связаны с высок( стоимостью металла.  [c.384]

Для горячей прокатки титана и его сплавов требуются более высокие давления, чем для прокаткЬ большинства других конструкционных материалов. Прокатку проводят при температурах на 100° С ниже температуры ковки, что обеспечивает тонкую мелкозернистую структуру, придающую хорошие механические свойства. Горячей прокаткой получают листы толщиной более 6 мм. Более тонкие листы изготовляют тен.пой и холодной прокаткой. Теплая прокатка, которую проводят нри 650—700° С, не позволяет получить высококачественные листы тоньше 2. нм из-за неравномерной толщины листа, обусловленной перепадом температуры по его длине. Поэтому листы толщиной менее 2 м.ч изготовляют на завершающей стадии холодной прокаткой. В настоящее время из технического титана производят листы шириной до 1200 мм, длиной до 3 и и минимальной толщиной 0,2. мм. Налажено также производство фольги толщппо) от 0,003 до 0,200 мм с допуском по толщине 20%.  [c.375]

Новым металлическим материалом, занимающим видное место в машиностроении, являются титан и сплавы на его основе. Это серебристо-белый металл с температурой плавления 1660° и удельным весом 4,5 г/сж . Технический титан высокой чистоты содержит не более 0,1% примесей (Ре Мп А1 С 51 N1), имеет невысокую прочность, хорошую пластичность, по свойствам приближаясь к чистому железу с углеродом образует очень твердые карбиды титана. Татан удовлетворительно обрабатывается давлением (ковкой, прессованием, прокаткой), сваривается дуговой сваркой в атмосфере защитных газов. Имеет высокую стойкость против коррозии в пресной, морской воде и в некоторых кислотах. Примеси резко повышают прочность, одновременно снижая пластичность титана. Изготовляемый в СССР технический титан, содержащий до 0,5% примесей имеет 6в =55—75 кГ1мм 6 = 20—25%. К к конструкционные материалы Б машиностроении применяются сплавы титана с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение  [c.191]

Конструкционными сталями могут быть как углеродистые, так и легированные стали. Содержание углерода в этой группе сталей чаш,е не превышает 0,5—0,6 о. Конструкционная сталь должна обладать высокой прочностью, пластичностью и вязкостью в сочетании с хорошими технологическими свойствами. Сталь должна легко обрабатываться давлением (прокатка, ковка, штамповка и т. д.) и резанием, хорошо свариваться, обладать высокой прокаливаемостью и малой склонностью к деформациям и треш,инообра-зованию при закалке и т. д.  [c.265]

Конструкционная сталь должна обладать и хорошими технологическими свойствами oбpaбaтывafь я давлением (прокатка, ковка, штамповка и т. д.) и резанием, хорошо свариваться, обладать высокой прокаливаемостью и малой склонностью к деформациям и трещинообразованию при закалке и т. д.  [c.279]

Свойство конструкционных материалов упрочняться при пластическом деформировании часто используется на практике для повышения их механических характеристик (механическое упрочнение) и несущей способности конструкций (например, автофретирование). Материал подвергается упрочнению в процессе технологических операций — гибки, ковки, штамповки, которые приводят к деформационной анизотропии материала, оказывающей заметное влияние на его последующее поведение под нагрузкой. В связи с этим актуальное значение приобретают экспериментальные исследования предыстории нагружения на процессы деформирования при разных видах напряженного состояния, а также опытное определение предельных состояний при различных величинах допуска на пластическую деформацию.  [c.278]

Чугун продолжает оставаться одним из основных литейных материалов современности. Прогнозирование показывает, что эту роль он сохранит и в будущем. По1Мимо традиционного применения в металлургии и машиностроении (изложницы, станины станков, трубы и др.), чугун все шире используют для деталей, от которых требуется высокая конструкционная прочность и специальные свойства. Серые чугуны с шаровидным графитом и ковкие чугуны широко применяют сейчас для самых ответственных отливок, в частности для коленчатых валов различных двигателей. Чугуны с пластинчатым графитом и перлитной основой применяют для таких деталей, как гильзы, поршни и поршневые кольца. Белые чугуны зарекомендовали себя как литейные материалы с рекордной износоустойчивостью в условиях абразивного износа. Широко используют отбеленные чугуны при отливке прокатных, мельничных и бумагоделательных валков. Как никакой другой литейный материал, чугун проявляет большую универсальность, обнаруживая самые разные свойства. Это обусловлено возможностью широко варьировать строение чугуна. Меняя химический состав расплава, условия затвердевания и охлаждения в твердоьм состоянии, можно коренным образом изменять эксплуатационные характеристики отливок.  [c.7]


Конструкционная сталь должна обладать высокой прочностью, пластичностью и вязкостью в сочетании с хорошими технологическими свойствами. Сталь должна хорошо деформироваться (при ковке и штамповке), хорошо обрабатываться резанием, обладать хорошей свариваемостью и малой склонностью к трещинообразова-нию при закалке.  [c.131]

Исходя из практических потребностей промышленности, государственными стандартами (ГОСТ) установлены для разных видов материалов определение их сорта, а для каждого сорта предусмотрены его разновидности, характеризуемые марками. Так, для чугуна предусмотрены сорта серый чугун, ковкий чугун, высокопрочный чугун, антифрикционный чугун и некоторые другие а для такого сорта, как серый чугун, установлены марки СЧОО, СЧ12—28 и др., всего 10 марок. Марки материалов обозначаются цифрами, буквами или их сочетанием, которые условно и характеризуют качество материала. Сама же характеристика материала содержится в стандарте, устанавливающем требования к данному материалу. Например, марка Ст.З указывает только порядковый номер углеродистой стали обыкновенного качества, а полная качественная характеристика этой стали (способ получения, механические свойства, методы испытаний и др.) изложена в ГОСТе 380—60. В ряде случаев марка содержит основную характеристику материала, например, м ка 20 углеродистой качественной конструкционной стали по ГОСТу 1050 60 указывает, что эта сталь содержит в среднем 0,20% углерода.  [c.57]

Некоторые физические свойства титана отличаются от аналогичных свойств широко распространенных конструкционных материалов. При температуре 882° С титан претерпевает кристаллографическое превращение выше этой температуры металл имеет о. ц. к. решетку, называемую Р-фазой, а ниже — г. п. у. решетку, известную как а-фаза. Последняя характеризуется отношением с а=1,587, что значительно меньше, чем у других металлов с гексагональной решеткой, таких как магний, цинк и кадмнй. Это означает наличие большего числа плоскостей скольжения, по которым может происходить деформация, и действительно высокочистый титан при комнатной температуре является сравнительно пластичным металлом. Допустимая деформация между отжигами составляет более 95%. Во многих сплавах с помощью фазового превращения можно получать некоторое повышение прочности, но это достигается ценой уменьшения пластичности. Таким образом, технически чистый титан достаточно мягок и легко поддается холодной штамповке, а более высокопрочные сплавы хорошо обрабатываются ковкой. Обработка резанием осуществляется с помощью обычного инструмента, но при меньших скоростях, чем для большинства других металлов и сплавов. Сварка титана и большинства его сплавов может производиться аргоно-дуговым методом прн защите аргоном обеих сторон шва. Основные физические свойства титана таковы  [c.187]

Занимая по своим механическим свойствам промежуточное положение между серым чугуном и сталью, ковкий чугун является нехорошим конструкционным материалом при производстве отливок, главным образом мелких, тонкостенных, а также сложных по конт фигурации, от которых требуется механичет ская вязкость при значительной прочности (например головки и наконечники соединительных рукавов воздушного тормоза).  [c.37]


Смотреть страницы где упоминается термин Ковкий Конструкционные свойства : [c.288]    [c.4]    [c.169]    [c.439]    [c.250]    [c.171]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.117 ]



ПОИСК



21, 22, 24, 758 — Свойства ковкие

Ковка

Ч ковкий



© 2025 Mash-xxl.info Реклама на сайте