Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классификация структурных групп

Рис. 1.16. примеры классификации структурных групп  [c.34]

Примеры такой классификации структурных групп представлены на рис. 1.16 а — П класс 2-й порядок б — III класс 3-й порядок в—III класс 4-й порядок а — IV класс 3-й порядок.  [c.34]

В книге рассматриваются в основном плоские механизмы. При этом из механизмов с низшими кинематическими парами даются механизмы только с простейшими структурными группами Ассу-ра. Поэтому классификация структурных групп соответственно классификация механизмов приведены несколько упрощенно. Структурные группы с двумя звеньями отнесены к I классу, с четырьмя — ко II классу и т. д. К соответствующим классам относятся и механизмы. Механизмы без структурных групп, состоящие только из ведущего звена, отнесены к механизмам нулевого класса.  [c.3]


КЛАССИФИКАЦИЯ СТРУКТУРНЫХ грУпп  [c.180]

Проводим классификацию структурных групп по Артоболевскому - Ассуру.  [c.231]

Классификация структурных групп  [c.232]

В дальнейшем будет показано, что кинематический и силовой расчет механизмов наиболее удобно проводить для структурных групп, составляющих механизм, и именно для структурных групп различных классов разработаны методы расчетов. Рассмотренная классификация плоских механизмов с низшими парами [3, 36] может быть распространена на механизмы с высшими парами путем замены высших пар низшими.  [c.26]

Принципиально возможны фазовые превращения и более высокого порядка, однако эксперимента ьное определение порядка их затруднено. Наряду с рассмотренной существуют и другие классификации фазовых превращений. В качестве классификационных признаков в иих служили характер изменения агрегатного состояния, вид превращений в связи с диаграммой состояния, механизм переупаковки атомов, перераспределение компонентов, число образующихся фаз, группы симметрии и др. [64, 119, 139, 160, 203, 233, 277. В работе [283] приведена систематическая классификация структурных изменений, основанная на особенностях роста.  [c.27]

В книге механизмы подразделены на элементарные и составные, что не противоречит общепринятой структурной классификации Ас-сура —Артоболевского, ибо любая структурная группа в сочетании с ведущим звеном и стойкой и есть элементарный механизм с низшими парами. Такой переход от структурной группы к элементарному механизму необходим в проектировании потому, что структурная группа, взятая вне механизма, не дает представления о кинематических и динамических свойствах механизма, которые необходимо учитывать для обоснованного выбора кинематических схем. Поэтому структурный анализ дан в пособии применительно к кинематическому и силовому расчетам рычажных механизмов.  [c.4]

Следует отметить, что деление механизмов на элементарные и составные не противоречит общепринятой структурной классификации механизмов по Ассуру — Артоболевскому. Так, любая структурная группа, или группа Ассура (подробнее см. главу 2, 5), если она присоединена к ведущему звену и к стойке, является соответствующим элементарным механизмом. Введение понятия эле-  [c.10]

Согласно классификации (рис. 2.28) структурные группы разделены на классы II, III, IV, V и т. д. В таблице указан внешний признак, помогающий определить класс группы в группах II класса каждое звено входит только в две пары в группах III класса есть звенья, входящие в т р и пары в группах IV класса и выше есть замкнутые-контуры, состоящие из четырех и больше-г о числа звеньев, совпадающего с номером класса. Другие внешние признаки (число звеньев и пар, число свободных пар и пр.) являются второстепенными и на класс группы не влияют. Так, например, группа из девяти пар и шести звеньев в зависимости от вида их взаимного соединения может относиться к III, IV, V или VI классу.  [c.62]


Самым важным свойством классификации является то, что все группы одного класса имеют единые методы расчета, резко отличные от методов расчета групп других классов. Таким образом, внешний признак позволяет для каждой структурной группы установить ее класс и, тем самым, определить способ кинематического и силового анализа данного механизма.  [c.62]

Как было показано ранее, в основе классификации лежит принцип последовательного наслоения структурных групп. В самом деле, вначале мы приняли двухзвенную группу (т = 1), которая была присоединена к исходному механизму. Затем присоединялась четырехзвенная группа при т. = 2. Очевидно, прит = 3 можно получить группу из шести подвижных звеньев, и больше — при большем значении этого параметра. Класс и порядок механизма во всех случаях определяются видом присоединяемой структурной группы Ассура.  [c.33]

U7 = 3rt—2/72 —Pi = 3- 3 —2.4 = 1. Согласно классификации И. И. Артоболевского данный механизм (рис. 96) состоит из механизма 1-го класса (стойка-кривошип ОА) и структурной группы 2-го класса 2-го порядка (шатун АВ — ползун В). Поэтому механизм является механизмом 2-го класса.  [c.216]

Целью работы является привитие навыков структурного анализа наиболее распространенных в технике механизмов. В соответствии с этим студент должен изучить предложенный преподавателем механизм, построить кинематическую схему с правильным обозначением [3] кинематических пар и размеров звеньев механизма. Пользуясь кинематической схемой, студент должен также определить число степеней свободы механизма, получить указание преподавателя на то, какое из звеньев принять ведущим, разбить механизм на структурные группы, произведя предварительно замену высших кинематических пар (если они имеются) кинематическими цепями с парами низшего класса. Затем следует определить класс, вид и порядок структурных групп, установить семейство и класс механизма по структурной классификации Ассура — Артоболевского и построить структурную схему механизма.  [c.5]

Наибольшее применение при структурном синтезе новых машин и механизмов находит довольно хорошо разработанный метод наслоения структурных групп (групп Ассура). Заметим, что в соответствии с принятой в этой работе классификацией механизмов разработанные в настоящее время методы [5-9, И, 21, 26] структурного синтеза машин и механизмов, включая и метод наслоения структурных групп, относится в основном к простым и сложным однотипным механизмам.  [c.169]

Классификация (см. 3.3) структурных групп механизма строгального станка приведена в табл. 3.4.  [c.231]

Таким образом, классификация кривошипных прессов должна включать три класса машин по технологическому назначению. В каждый из этих классов могут входить следующие структурные группы прессов простого, двойного, тройного действия и автоматы с определенным целевым применением (рис. 1.3).  [c.17]

На основании ГОСТ 25378—82 и общепринятых классификаций роботов [23, 26] можно выделить следующие классификационные признаки, наиболее характерные для трех описанных, выше структурных групп сверхлегких роботов, — это выполняемая функция, степень специализации, число степеней подвижности, вид привода, способ управления и программирования.  [c.19]

В соответствии с классификацией А. А. Бочвара в зависимости от подобия фазовых (структурных) превращений все виды и процессы термической обработки стали делятся на четыре группы.  [c.111]

На основе структурной классификации механизмов устанавливают, на какие группы распадается кинематическая цепь, и определяют последовательность их соединения, в зависимости от чего и выбирают метод расчета, рациональный для данного вида механизма.  [c.281]

При использовании структурной классификации механизмов удается применить общие методы кинематического и силового анализа к большим группам механизмов, отличающихся между собой назначением, сложностью и т. п.  [c.15]

Группа. Согласно указанному принципу структурной классификации, механизмы более высоких классов, чем первый, образуются присоединением к исходному механизму цепей, степень подвижности которых должна равняться нулю. Кинематическая цепь, которая, будучи присоединенной свободными элементами пар (внешние пары) к стойке, обладает нулевой степенью подвижности, называется группой.  [c.15]


Группа Определение физических свойств покрытий состоит из наибольшего числа методик, причем часть способов, которые применяются сравнительно редко и имеют узкую методологическую направленность, в классификацию, предложенную нами, не включены. Наиболее важным физическим свойством (и одновременно структурной характеристикой) в этой группе является пористость. Методика определения пористости, в свою очередь, имеет ряд разновидностей (гидростатическое взвешивание, микроскопический способ, сравнение со стандартной шкалой и т. д.).  [c.18]

Что касается группы Структурные исследования , то в классификации приведены только наиболее распространенные из применяемых способов изучения тонкого строения. Большинство приемов препарирования и исследования покрытий апробированы ранее на металлических образцах и не вызывают особых затруднений. Достаточно подробно освещены в монографии специфические вопросы подготовки покрытий для изучения структуры (например, ионное утонение керамических фольг).  [c.19]

Самым трудным был вопрос, какую систему классификации положить в основу структурно-конструктив-ную или по функциональному назначению. В результате подробного изучения этого вопроса мы остановились на структурно-конструктивной классификации. Если бы в основу была положена классификация по функциональному назначению механизмов, то большое число широко применяемых механизмов общего назначения (кривошипно-ползунные, шарнирные четырехзвенники и т. д.) должно было бы быть включено почти в каждую группу механизмов, выполняющих те или иные функции. Таким образом, одни и те же виды механизмов повторялись бы в различных группах. Для сборника механизмов общего назначения более стройной является классификация по структурно-конструктивным признакам механизмов, но параллельно с ней должна быть дана и вторая, увязанная с первой, классификация механизмов— по чх функциональному назначению. Для специа-  [c.11]

Ниже излагается разработанная классификация по структурно-конструктивным и функциональным признакам. Все механизмы разделены на двенадцать основных групп, каждая группа разбивается на подгруппы. Каждая группа имеет индексы, состоящие из двух прописных букв, входящих в название группы, каждая подгруппа также имеет индексы — одна или две основные буквы в названии подгруппы.  [c.12]

В таблице 2 (стр. 24—29) имеется указатель механизмов, составленный по принципу их функционального назначения. Рядом с названиями групп, расположенных в алфавитном порядке, указаны индексы групп и подгрупп по основной структурно-конструктивной классификации и общие порядковые номера по всему сборнику (номера, стоящие в левом верхнем углу карты). Таким образом, если конструктору необходимо найти, например, возможные схемы механизмов тормозов, то по таблице 2 он найдет, что механизмы тормозов описаны в следующих группах и подгруппах и под такими порядковыми номерами  [c.13]

Рассмотрим работу привода, который следует отнести к группе 3 структурной классификации.  [c.124]

В настоящее время нет единой классификации всех структурных групп. Наиболее полно проклассифицированы только группы Ассура, существующие в трехмерном трехподвижном пространстве, допускающем два независимых поступательных движения вдоль осей Хи 7и одно вращательное вокруг оси 2. Отметим, что в современном машиностроении именно механизмы, существующие в трехмерном трехподвижном пространстве, нашли самое широкое распространение на практике. Потому в данном параграфе рассмотрим структурную классификацию структурных групп и так называемых плоских механизмов.  [c.180]

В структурной классификации, предложенной Л. В. Ассуром и И. И. Артоболевским, плоские механизмы делятся на классы. Согласно этой классификации, механизм может быть образован путем ирис0едиие1и1я к начальному звену (или к начальным звеньям) и стойке нулевых структурных групп. Каждое начальное звено, входящее в кинематическую пару со стойкой, условно называется механизмом I класса (начальным механизмом).  [c.9]

Разработанная Л. В. Ассуром структурная классификация плоских рычажных механизмов облегчает исследование имеющихся и создание новых механизмов без избыточных связей в их плоской схеме ( / = 0), Основной принцип ее состоит а том, что механизм мо жет быть получен путем присоединения к одному или нескольким начальным звеньям и стойке кинематических цепей (структурных групп) нулевой подвижности относительно тех звеньев, к которым группа, присоединяется. Таким образом, структурная группа — кинематическая цепь, присоединение которой к механизму не изменяет числа его степеней свободы. Для краткости в дальнейшем введем условный термин — первичный механизм (по И. И. Артоболевскому — механизм Х ьла1хаХ представляющий собой простей-  [c.36]

Согласно структурной классификации, разработанной Л. В. Ассуром, И. И. Артоболевским и др., любой плоский механизм получается присоединением структурных групп к начальному звену и стойке. И наоборот, плоский механизм всегда можно разделить на начальные звенья и составляющие его структурные группы. Эти структурные группы и определяют строение механизма. Определить строение механизма — это значит установить, пз каких структурных групп состоит данный механизм и в како.м порядке эти структурные группы присоединены к начальным звеньям и стойке.  [c.26]

Этой же цели служит структурная классификация механизмов, предложенная для плоских механизмов с кинематическими парами 5-го класса И. И. Артоболевским. Согласно этой классификации механизмы объединяются в классы от 1-го и выше по паивысшему классу структурной группы, входящей в механизм. Следовательно, класс механизма определяется в результате его структурного анализа.  [c.37]

ИЛИ ГАУ генерируется по групповому технологическому маршруту на основе классификации структурных схем агрегатного оборудования по степени концентрации операций. Разработанная система классификации ГПС по этому признаку является развитием приведенной в т. 1 справочника общей классификации и содержит все принципиально различающиеся варианты схем построения станочных систем, которые разделены на три класса KI — однонозиционные станки, позволяющие осуществить первую степень концентрации операций (одно- и многостороннюю обработку деталей в одной позиции одним или несколькими инструментами последовательно, параллельно, параллельно-последовательно) КП — многопозициоиные станки (автоматические линии с жесткой связью между станками) — вторая степень концентрации операций, осуществляемая при последовательном или параллельно-последовательном объединении на станке или станочной линии позиций обработки детали К1П — автоматические системы из многопозиционных станков или линий с гибкими связями — третья степень концентрации операций. В результате использования этой классификации для группы деталей может быть получено до сотни вариантов структурных схем станочных систем.  [c.196]


Осн. задачей Т. расслоений является задача классификации расслоений. По определению, гомоморфизм f F, E2 задаёт эквивалентность двух расслоений pi Е В и pi.Ej-rB, если он сохраняет слои, т. е. Pi f y))=Pi(y) для всех у из . Расслоение, эквивалентное прямому произведению, наз. тривиальным. Расслоения над евклидовым пространством (без ограничений на поведение в бесконечности) тривиальны (J-расслоения над п-мерной сферой S" классифицируются элементами гомотопич. группы i i(G). Топологич. характеристики расслоений наз. характеристическими классами. Для расслоений со структурной группой G (где G—группа Ли) харак-теристич. классы могут быть выражены через кривизну расслоения, определяя тем самым топологич. заряды связностей в расслоении (или, эквивалентно, калибровочных полей). Напр., единств, топологич. инвариантом, задающим /(1)-расслоение над двумерной сферой Л , является первый класс Черна (Чжэня)  [c.147]

Указанные четыре группы составили остов представленной на рис. 5 классификации структурных изменений. Фазовые превращения I рода характеризуются комбинацией классификационных элементов и разделены на две части слева указаны превращения, сопровождающиеся изменением агрегатного состояния, справа — твердофазные переходы. В зависимости от того, происходит ли перераспределение компонентов между жидкостью, кристаллами и газом, эти превращения (возгонка, плавление, кристаллизация и др. ) могут быть избирательными и безызбиратель-ными.  [c.29]

СИСТЕМА (греч. systema — целое, составленное из частей) —1) совокупность элементов, Звеньев, свойства которых взаимосвязаны, координированы, подчинены общим для данной совокупности закономерностям, на-, пример машина, механизм, структурная группа, узел и т. п. 2) Взаимосвязь представлений, понятий, идей, подадненных какому-либо руководят, щему принципу, например система конструкторской документации, система допусков и т. п. 3) Определенный порядок, организация действий, операций, процессов. 4) Классификация предметов, явлений, понятий.  [c.328]

Однако развитие теории структуры и классификации механизмов не остановилось на этих достижениях. Были обнаружены такие механизмы и их структурные элементы, которые не полностью укладывались в разработанную систематику. В. В. Добровольский в своей Системе механизмов (1943) ввел понятие неассуровых цепей . Г. Г. Баранов (1952), исходя из положения Л. В. Ассура о том, что при удалении из статически определимой фермы звена она становится механизмом, разработал новую классификацию ассуровых групп и предложил формулы их строения, Н. И. Колчин в первой части своей монографии Механика машин (1948) предложил некоторое распространение общей структурной формулы ассуровых механизмов, введя понятие специальных , механизмов.  [c.366]

Изложены задачи структурного анализа и синтеза машин и механизмов. Рассмотрены наиболее распространенные на практике машины и механизмы, исследованы пространства, в которых они существуют. Получены универсальные формулы для определения подвижности простых механизмов. Приведены классификация и структурный анализ различных механизмов. Разработаны оригинальные математические модели, описывающие структуру механизмов и структурных групп. Рассморены методы образования механизмов и машин, а также структурно-параметрический синтез рычажных механизмов.  [c.2]

Каждый рычажный механизм рассматривается как система, состоящая из элементарного механизма, который в классификации Асура - Артоболевского назван механизмом I класса, и соединенных с ним и между собой структурных групп.  [c.180]

Структурный анализ машин и механизмов, особенно с развитыми кинематическими цепями, является сложной проблемой. Это связано с тем, что порой на начальных этапах исследования трудно определить подвижность пространства, в котором существует исследуемый механизм реализуемую, а не формальн)то, подвижность кинематических пар вид подвижных звеньев структурные группы, а также провести их классификацию.  [c.224]

Прежде всего по структуре и синтезу механизмов следует отметить работы акад. П. Л. Чебышева (1821 —1894 г.), который первым установил так называемую структурную формулу механизмов, по которой на основании схемы механизма можно подсчитать число степеней свободы, характеризующее его подвижность [1] . Он известен также как создатель аналитического метода синтеза шарнирных механизмов, на основании которого можно спроектировать шарнирный механизм, в котором ведомая точка будет описывать траекторию, лучше всего приближающуюся к заданной траектории, в частности прямолинейной. В результате своего аналитического метода, основанного на созданной им специально для этой цели теории функций, наименее отклоняющихся от нуля, Чебышевым предложена целая серия таких приближенно направляющих механизмов. Работы Чебышева по структуре механизмов в дореволюционное время были продолжены проф. Варшавского университета П. И. Сомовым и проф. СПБ Политехнического института Л. В. Ассуром [2]. Последним разработан общий метод создания сложных механизмов из особых образований, которые получили название в честь их автора групп Ассура. Работы Ассура были продолжены и развиты акад. И. И. Артоболевским и чл.-корр. АН проф. В. В. Добровольским. Последними, а также проф. А. П. Малышевым произведено обобщение структурной формулы Чебышева, и в этом виде она стала применена для так называемых пространственных механизмов, в то время как в первоначальном виде формула была справедлива лишь для плоских механизмов. Кроме того, И. И. Артоболевским и В. В. Добровольским была разработана классификация пространственных механизмов с распределением их по семействам и классам.  [c.6]

Анализ пол ученных результатов показывает, что в зависимости от содержания хрома износостойкие белые чугуны могут быть разделены на чешре группы сплавов, отл ичающйеся строением. и служебными свойствами. К первой группе можно отнести сплавы, содержащие 1—6% Сг, ко второй — сплавы, содержащие 10— 15% Ст, к третьей группе — сплавы, содержащие 17—23% Сг, а к четвертой — сплавы с 25—30% Сг. Предложенная классификация износостойких хромистых чугунов основана на зависимости физико-механических Свойств от морфологии и структурного сьстава карбидной фазы, а также фазового состава металлической основы сплавов.  [c.30]


Смотреть страницы где упоминается термин Классификация структурных групп : [c.661]    [c.15]    [c.52]    [c.221]    [c.199]    [c.647]   
Смотреть главы в:

Структура механизмов и машин  -> Классификация структурных групп



ПОИСК



Группа структурная

Классификация групп Баранова структурная механизмов



© 2025 Mash-xxl.info Реклама на сайте