Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение конструкционных углеродистых сталей

По содержанию углерода, определяющему основные характеристики, вид термообработки и область применения, конструкционная углеродистая сталь может быть подразделена на низкоуглеродистую с содержанием до 0,3 1о С, среднеуглеродистую с содержанием 0,3—0,5 >/о С и с повышенным содержанием углерода—свыше 0,50/о С.  [c.372]

Область применения конструкционной углеродистой стали в котлостроении. Основ-  [c.648]

Буквы Ст обозначают сталь, цифра после букв — условный номер марки в зависимости от состава стали н механических свойств (количество углерода не указывается). Для обозначения раскисленности в марке добавляют индексы кп — кипящая, пс — полуспокойная, спокойная без индекса. Ниже показана область применения конструкционной углеродистой стали обыкновенного качества  [c.62]


Напайные резцы являются наиболее распространенными. Стержни этих резцов достаточно устойчивой конструкции (проходные, подрезные и т. п.) изготовляются из качественной конструкционной углеродистой стали марок 45 -ь 50, а также марок У7 и У8. Для стержней резцов ослабленной конструкции (отрезные, подрезные,расточные и т. п.) применяется конструкционная легированная сталь марок 40Х или 45Х с последующей термической обработкой до твердости НЯС 40 45. Для стержней резцов, работающих с небольшими нагрузками (резьбовые, чистовые и т. п.), допускается применение конструкционной углеродистой стали марок 35 и 40, а также марок Ст. 6 и Ст. 7.  [c.90]

Области применения конструкционных углеродистых сталей общего назначения приведены в табл. 4.1.1.  [c.632]

Широкое применение ингибиторов коррозии в нефтяной и газовой промышленности объясняется тем, что в процессе добычи, подготовки и транспортировки нефти, газа и воды оборудование и сооружения, изготовленные в основном из конструкционных углеродистых сталей, эксплуатируются в условиях агрессивных коррозионных сред.  [c.42]

Во втором томе Конструкционная сталь приведены химический состав, физические, механические, технологические свойства и области применения конструкционной углеродистой и легированной стали.  [c.7]

II — коррозионно-стойкая хромоникелевая сталь /// — сталь для глубокой вытяжки IV — улучшаемая сталь с 0,6 % С V — конструкционная углеродистая сталь с 0,2 С (К — без покрытия Л — твердое хромирование М — азотирование Я — покрытие карбидом титана П — граница экономически эффективного применения VD-процесса)  [c.472]

Применение отдельных марок обыкновенной конструкционной углеродистой стали  [c.98]

Титан — металл, который находит все более и более широкое применение при создании высокопрочных и жестких конструкций и машин облегченного типа. Его удельный вес 4,5, что составляет примерно 60% удельного веса стали и около 160% удельного веса алюминия. По удельной прочности он превосходит все другие конструкционные металлы например, при изгибе в расчете на прочность. При замене конструкционной углеродистой стали на титановый сплав вес изготовленной конструкции уменьшится пропорционально отношению характеристик материала — примерно в 3 раза.  [c.47]

Механические свойства и примеры применения качественной конструкционной углеродистой стали  [c.27]

Применение СОЖ. Так как при сверлении режущие кромки работают в особо тяжелых условиях, то правильный выбор марки СОЖ и метода его подвода играет большую роль. При сверлении конструкционных углеродистых сталей хорошие результаты дает применение серо-хлорсодержащих  [c.45]


По способу изготовления — на цельные и составные. Цельные резцы — это резцы, у которых головка и державка изготовлены из одного материала. При применении дорогостоящих твердых сплавов и быстрорежущих сталей резцы изготавливаются составными головка — из инструментального материала, а тело (державка) — из конструкционной углеродистой стали.  [c.119]

Конструкционные углеродистые стали подразделяют на стали обыкновенного качества и качественные. Сталь углеродистая обыкновенного качества (ГОСТ 380—71) и сталь тонколистовая качественная низкоуглеродистая ГОСТ 9045—70, 16523—70, 3680—57 (сортамент) находят особенно широкое применение для деталей радиоаппаратуры. Стали конструкционные углеродистые качественные по ГОСТ 1050—60 применяют для деталей, имеющих ответственное назначение, таких как оси, втулки, детали механизмов управления, детали переключателей и др.  [c.36]

Названные свойства предопределяют также и высокие триботехнические свойства (особенно у перлитных чугунов). Поэтому высокопрочный чугун находит применение как новый конструкционный материал (в том числе для деталей узлов трения) и как заменитель углеродистой стали. Из него изготавливают поршневые кольца (мелкие тонкостенные отливки), коленчатые валы массой от нескольких килограммов до 2-3 т взамен кованых валов из стали, детали турбин, валки прокатных станов, направляющие, суппорты и другие детали станков. Детали из высокопрочного чугуна имеют лучшие антифрикционные свойства и значительно дешевле стальных деталей.  [c.19]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

В работе [5] приводятся исследования зависимости магнитных свойств некоторых средне- и высокоуглеродистых сталей от режимов закалки и отпуска и проведен анализ возможности контроля их свойств магнитными методами. Имеются работы, посвяш,енные изучению магнитных свойств шарикоподшипниковых и инструментальных [7, 9], конструкционных слаболегированных сталей [5, 10, 11]. При этом оказывается, что контроль по магнитным свойствам не всегда возможен. Так, для некоторых легированных конструкционных сталей, а также углеродистых с содержанием углерода 0,3—0,4% и выше однозначное изменение магнитных и механических свойств с ростом температуры термообработки наблюдается не для всего интервала температур [10—12 и др.], что затрудняет применение магнитных методов контроля.  [c.93]

Техническое применение чистого железа очень невелико. Зато железо, легированное углеродом,, является наиболее употребительным конструкционным материалом. В стали (или углеродистой стали) содержание углерода доходит до 1,3 %, а в чугуне оно может быть от 2 до 4%.  [c.101]

Высокопрочный чугун используют для отливок конструкционного назначения вместо стали и ковкого чугуна. Прочность его при нагреве до 450—500° С снижается медленнее, чем углеродистой стали. Он удовлетворительно обрабатывается резанием легко сваривается с помощью газовой сварки с применением стержней из чугуна, содержащего магний, причем прочность шва не отличается от прочности основного металла. Высокопрочный чугун хорошо воспринимает термическую обработку, которая может в значительных пределах изменять структуру и свойства отливок.  [c.51]


Развитие технологии термической обработки происходило также во взаимосвязи с применением для различны деталей машин и инструментов систематически увеличивающейся номенклатуры новых марок сталей и сплавов [19, 127, 214, 235, 270]. Достаточно указать, что первые стандарты на качественную сталь (ОСТы 7123 и 7124) включали 9 марок углеродистой стали и 6 марок стали с повышенным содержанием марганца легированные стали охватывали 20 марок. В настоящее время созданы марки сталей и сплавов, удовлетворяющие требованиям каждой отрасли машиностроения для каждой из них разработаны и применяются свои режимы термической обработки и специфическое оборудование. В отечественном машиностроении применяются стали и сплавы более чем по 30 ГОСТам. Например, по ГОСТу 4543-61 сталь легированная конструкционная имеет около 100 марок 14 групп, по ГОСТу 5632-61 стали и сплавы высоколегированные коррозионностойкие, жаростойкие и жаропрочные (деформируемые) 96 марок.  [c.146]

В условиях ускорения научно-технического прогресса машиностроение развивается в направлении непрерывного повышения скоростей и мош,ностей машин, а также их точности и долговечности при наличии тенденции к сокращению металлоемкости конструкций. В результате происходит возрастание применения высоколегированных материалов, обрабатываемость которых резанием все более усложняется. Так, например, переход от углеродистых конструкционных сталей на легированные понижает стойкость инструмента при неизменных режимах резания более чем в 2 раза. Переход на резание конструкционных легированных сталей после их термического улучшения снижает стойкость инструмента в 3 раза и более.  [c.313]

Чугун с шаровидным графитом находит применение в промышленности как новый конструкционный материал, а также как заменитель углеродистой стали, ковкого чугуна и серого чугуна с пластинчатым графитом.  [c.159]

С Мо, W, Nb и Ti тантал образует непрерывный ряд твердых растворов. Сплавы тантала имеют повышенные прочностные характеристики. Как конструкционный материал тантал находит применение в химическом машиностроении. Из него изготавливают теплообменную аппаратуру для получения брома из смеси хлора и брома, для дистилляции соляной и азотной кислот из неочищенного сырья, при получении бромида этилена и хлористого бензола, при регенерации серной кислоты. Из тантала изготавливают нагреватели, работающие в особо агрессивных средах, например, в смеси хромовой и серной кислот, при дистилляции пероксида водорода. В ряде случаев тантал используют для плакировки аппаратуры из углеродистой стали.  [c.222]

Применение душевого или струйного охлаждения водой при закалке конструкционных углеродистых и низколегированных сталей обеспечивает их значительное упрочнение, не достигаемое при других способах охлаждения. Объясняется это предотвращением отпуска мартенсита в процессе закалки и возникновением на поверхности сжимающих напряжений.  [c.317]

Многие детали машин, насосов, гидропрессов и других механизмов, работающие в условиях кавитационного воздействия, изготовляют из легированных сталей перлитного класса. В этих условиях наиболее эффективно применение перлитных сталей после соответствуюш,ей термической обработки. Поэтому их применение для изготовления крупных деталей связано с известными трудностями из-за необходимости выполнения термической обработки. Однако такой простой вид термической обработки, как нормализация, для некоторых легированных сталей этого класса дает весьма значительный эффект (по сравнению с углеродистой сталью). Выбор сталей для работы в условиях гидроэрозии следует выполнять с учетом необходимых конструкционных свойств. Некоторые стали могут иметь высокую эрозионную стойкость, но оказаться непригодными по технологическим или механическим свойствам поэтому эрозионную стойкость сталей следует оценивать в сочетании с их основными характеристиками.  [c.179]

Низколегированные стали находят применение в различных отраслях машиностроения — преимущественно в качестве конструкционных. С точки зрения коррозионной стойкости они не лучше углеродистых сталей. Легирующие добавки в них вводятся  [c.97]

Проводившиеся в специальных камерах в промышленных условиях сравнительные испытания металлических материалов [5] подтвердили представленные выше результаты оценки коррозионной стойкости легированных сталей при фенольной очистке масел. Этой работой показана также эквивалентность нержавеющим сталям технического титана при изготовлении оборудования для агрессивных фенольных сред и установлена возможность применения алюминиевых сплавов для изготовления оборудования, работающего в условиях воздействия фенольных вод, в которых углеродистые стали быстро разрушаются коррозией. По результатам этого исследования построена диаграмма (рис. 7.5, стр. 233) областей применения конструкционных материалов для оборудования фенольной очистки масел.  [c.240]

На рис. 1.9 представлена зависимость предела прочности от температуры для различных материалов. При температурах ниже 300 С нет необходимости в применении специальных сталей, а наиболее целесообразно применение конструкционных углеродистых сталей при температурах до 565 С следует применять низко- и среднелегирован-  [c.40]

Конструкционная углеродистая сталь —один из наиболее практичных и широко используемых материалов. По сочетанию таких свойств, как высокая прочность, обрабатываемость, свариваемость и сравнительная экономичность применения, подобные стали не имеют равных себе среди прочих материалов. В результате объем производства сталей намного превосходит суммарный объем производства других конструкционных металлов. Углеродистые стали широко применяются и в морских средах из них изготавливают корпуса судов, буи, контейнеры, подпорные стенки, сваи и всевозможные узлы подводных конструщий. Самый большой недостаток этих сталей при эксплуатации в морских условиях — склонность к коррозии в солевых средах.  [c.440]


К числу конструкционных углеродистых сталей относятся и так называемые автоматныестали (ГОСТ 1414—54). Эти стали предназначены для изготовления мелких деталей (в частности, крепежных) на станках и в особенности на автоматах. Для возможности применения скоростного резания эти стали должны обладать высокой обрабатываемостью, т. е. легкостью обработки снятием стружки. Плохая обрабатываемость обычных (неавтоматных) низкоуглеродистых сталей объясняется их высокой пластичностью и высокой вязкостью. При обработке на станках обычных сталей получается вьющаяся стружка, которая в результате трения о режущий инструмент вызывает сильный его нагрев и повышенный износ. Поэтому при обработке обычных сталей приходится снижать скорость резания и часто менять режущие инструменты, что неблагоприятно отражается на производительности любого станка и в особенности автоматов.  [c.19]

За последнее время находит применение сварка трением, предложенная А. И. Чудиковым. Этим способом могут быть сварены между собой различные стали, латунь со сталью, латунь с чугуном, латунь с медью и т. д. Большой интерес представляет сварка трением быстрорежущей стали Р9 или Р18 с конструкционной углеродистой сталью марки 45.  [c.128]

Повышение динамических качеств современных отечественных автомобилей потребовало применения высокопрочных сталей, отличающихся не только высокой износостойкостью, высоким пределом усталости, но и хорошей сопротивляемостью динамическим нагрузкам. В связи с этим, кроме конструкционных углеродистых сталей, тниро-кое распространение получили легированные стали, хромоникелевые, хромистые и др.  [c.15]

По качественным признакам конструкционная углеродистая сталь делится на сталь обыкновенного качества и сталь качественную. Наибольшее применение в инструментальном производстве находит качественная сталь, которую применяют для изготовления режущих и поверочных инструментов, деталей приспособлений, штампов, державки резцов, головки сборных фрез, плашкодержа-телей. Стали марок 12 и 20 имеют высокую пластичность, хорошо штампуются. Из них изготовляют шаблоны, листовые скобы, угольники и т. п. Для повышения твердости и износоустойчивости поверхностного слоя инструменты подвергают термической обработке (цементации и закалке).  [c.36]

Конструкционные углеродистые стали. При изготовлении прессформ большое применение находят конструкционные цементируемые стали с небольшим содержанием углерода (от 0,2 до  [c.178]

Наиболее доступными способами борьбы с атмосферной коррозией углеродистых сталей являются различные металлические покрытия лакокрасочные покрытия, содержащие пассивирующие пигменты применение замедлителей коррозии, смазок и др. В зависимости от конструкционных особенностей сооружений, деталей и изделий, эксплуатационных условий, характера агрес-сишпн атмосферы и т. д. в каждом отдельном случае выбирается тот 1ЛИ иной метод защиты. Эти методы защиты рассматри-ваю- ся в соответствующих разделах.  [c.183]

Учитывая результаты этих исследований, можно сформулировать основные рекомендации, пользуясь которыми, следует подходить к выбору углеродистых сталей для изготовления деталей, работающих при ударе по закрепленному и незакрепленному абразивам. Для изготовления деталей оборудования и инструмента, подвергающихся при эксплуатации ударам большой энергии об абразивную поверхность, следует рекомендовать эвтектоидные стали. Для изготовления деталей машин и инструмента, работающих в режиме ударно-абразивного изнашивания при небольших энергиях удара, можно рекомендовать среднеуглеродистые стали. Применение в этом случае инструментальной и, прежде всего, заэвтек-тоидной стали нецелесообразно, так как инструментальная сталь в этом случае не имеет существенных преимуществ перед конструкционной. При выборе оптимального содержания углерода в легированных сталях необходимо учитывать влияние легирующих элементов на концентрацию углерода в эвтектоиде.  [c.167]

Нелегированная углеродистая сталь — важнейший конструкционный материал, уже длительное время широко используемый в морских условиях. В последнее время более широкое применение находят низколегированные стали, обладающие повышенной прочностью. В некоторых специальных случаях применяют также другие материалы иа основе л<елеза, например чугун, а также сварочное и технически чистое железо. Выбор сталей в качестве материала для морских конструкций обусловлен такими факторами, как доступность, низкая стоимость, хорошая обрабатываемость, опыт ироектирования, физические и механические свойства.  [c.28]

Хорошие результаты даёт применение совремённого метода закалки зубьев токами высокой частоты при конструкционных углеродистых закаливающихся сталях с содержанием углерода 0,45%.  [c.173]

Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контактная коррозия может возникать также в случаях, если различие элек-трохимичес1сих свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохимических характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии.  [c.134]

Приведенные результаты показывают, что при выборе углеродистой стали в качестве конструкционного материала для деталей, подвергающихся гидроэрозии, следует отдавать преимуш,ество качественным доэвтоидным сталям с повышенным содержанием углерода (например, стали 35, 40 и 45). Эти стали после соответствующей термической обработки обладают высоким сопротивлением струеударному воздействию. Однако их низкая коррозионная стойкость не позволяет рекомендовать их для изготовления деталей, работающих в условиях постоянно действующей агрессивной среды. В этих условиях влияние электрохимической коррозии настолько велико, что применение таких сталей становится невыгодным. Хорошие результаты получают в случае, если поверхность деталей, изготовленных из углеродистых сталей, можно защитить от электрохимической коррозии нанесением диффузионных покрытий (например, хромом или титаном).  [c.130]

Анализируя литературные источники и производственные данные (в частности, ОГКМ, АНК "Башнефть", ОАО "Татнефть") о применении конструкционных материалов для оборудования и трубопроводов, работающих в сероводородсодержащих средах, можно сделать вывод о том, что коррозия углеродистых сталей в таких условиях неотвратима, поскольку образующиеся продукты коррозии не способствуют наступлению пассивного состояния металла ни при каких комбинациях внешних и внутренних факторов. В связи с отмеченным, действенным направлением по повышению долговечности конструкций может быть применение коррозионно-стойких материалов и покрытий, предотвращающих или снижающих интенсивность воздействия рабочих сред за счет рационального использования электрохимических характеристик материала подложки и покрытия, а также барьерного эффекта.  [c.27]



Смотреть страницы где упоминается термин Применение конструкционных углеродистых сталей : [c.148]    [c.533]    [c.405]    [c.63]    [c.106]   
Смотреть главы в:

Изготовление и ремонт измерительных и режущих инструментов  -> Применение конструкционных углеродистых сталей



ПОИСК



Р углеродистое

СТАЛЬ 280 СТАЛЬ КОНСТРУКЦИОННАЯ

Сталь Применение

Сталь конструкционная

Сталь углеродистые

Сталя углеродистые

Углеродистая сталь конструкционная



© 2025 Mash-xxl.info Реклама на сайте