Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура стали после отпуска

Фиг. 138. Структура стали после отпуска Фиг. 138. <a href="/info/101258">Структура стали</a> после отпуска

Фиг. 139, Структуры стали после отпуска при 700° (X 500). Фиг. 139, <a href="/info/101258">Структуры стали</a> после отпуска при 700° (X 500).
Отпуск — с нагревом до 550...580° С. Для предупреждения отпускной хрупкости вал после отпуска следует охлаждать в масле или в воде. Структура стали после отпуска — сорбит.  [c.176]

СТРУКТУРА СТАЛИ ПОСЛЕ ОТПУСКА  [c.276]

Коагуляция карбидов при отпуске происходит в результате растворения более мелких и роста более крупных частиц цементита при одновременном обеднении углеродом а-твердого раствора. Структуру стали после высокого отпуска называют сорбитом отпуска.  [c.187]

Структура стали после промежуточного превращения состоит из мартенситной а-фазы, пересыщенной С остаточного аустенита с концентрацией С, отличающейся от средней и цементитных частиц, выделившихся из аустенита и образовавшихся вследствие отпуска а-фазы. Помимо продуктов промежуточного превращения, в структуре стали могут быть перлит и мартенсит.  [c.106]

При глубоком травлении закаленных сталей выявляется особенно плотная и гладкая картина. От нее отличается картина глубокого травления улучшенных сталей. Влияние отпуска становится заметным в интервале температур от 150 до 400° С. Повышение температуры отпуска до 650° С не приводит к дальнейшим изменениям. Выявленная глубоким травлением структура стали после неполного отжига выглядит более грубой. Если глубоким травлением закаленной стали выявлены трещины, то трудно установить, вызвано ли их появление обработкой горячими кислотами или они являются закалочными трещинами. Даже после отпуска при 350—400° С все еще могут появляться трещины.  [c.44]

Кремний способствует выделению углерода в соответствии со стабильной системой железо—графит незначительно изменяет характер превращений по сравнению с превращениями в соответствующих марках углеродистой стали несколько повышает устойчивость аустенита в перлитной и особенно в средней области понижает чувствительность к закалке и повышает устойчивость против отпуска кремнистая сталь отличается особым видом устойчивости против отпуска (например, в закаленной стали с 2% кремния и 0,6% углерода игольчатая ориентировка структуры, напоминающая исходный мартенсит, сохраняется после отпуска при 500 С, в то время как в углеродистой стали после отпуска при той же температуре игольчатой ориентировки совершенно не наблюдается) повышает сопротивление износу, что ухудшает обрабатываемость конструкционной стали особенно при сверлении стабилизирует аустенит повышает упругость стали. Практически не растворяется в цементите  [c.22]


Структура закалённой и отпущенной стали. После отпуска мартенсит легко обнаруживается обычным травлением. Структура состоит из игольчатого мартенсита (размер игл зависит от размера зёрен аустенита) и избыточных карбидов (фиг. 84, см. вклейку).  [c.458]

Технологический процесс термической обработки основных деталей, изготовленных из высоколегированных сталей, должен состоять из режимов, стабилизирующих структуру стали после закалки (обработку холодом или высокий отпуск).  [c.272]

Высокотемпературный (высокий) отпуск проводят при 500— 680 С. Структура стали после высокого отпуска — сорбит отпуска. Высокий отпуск создает наилучшее соотношение прочности и вязкости стали.  [c.216]

Мартенситная структура стали после закалки метастабильна, и для ее превращения в более устойчивую структуру производят отпуск.  [c.157]

Низкий отпуск проводят при 150-200 °С. Целью низкого отпуска является снижение внутренних напряжений и некоторое уменьшение хрупкости мартенсита при сохранении высокой твердости и износостойкости деталей. Структура стали после низкого отпуска представляет собой мартенсит отпуска. Основная область применения низкого отпуска — режущий и мерительный инструмент, а также машиностроительные детали, ко-  [c.449]

Структура стали после термообработки представляет собой легированный феррит с 10-15 % остаточного аустенита и небольшим количеством карбидов. Остаточный аустенит увеличивает вязкость стали. Максимум ударной вязкости стали 0Н9 (70-80 Дж/см ) соответствует отпуску при 575 °С. При правильно выбранной температуре отпуска остаточный аустенит не превращается в мартенсит, стабилизируется и не подвергается превращениям при охлаждении до рабочих температур. При появлении мартенсита в структуре снижается ударная вязкость при криогенных температурах.  [c.608]

Проведенные исследования подтверждают, что сопротивление микроударному разрушению сталей перлитного и мартенситного классов определяется главным образом характером структур, получаемых в результате их термической обработки. На эрозионную стойкость этих сталей (после отпуска) влияет количество отдельных структурных составляющих, их дисперсность, форма и характер распределения. Результаты исследования показывают, что структура стали является определяющим фактором при оценке ее эрозионной стойкости.  [c.141]

Отпуск стали - необходимая и заключительная операция термической обработки, в результате которой формируются окончательная структура и свойства стали. При отпуске снижаются и устраняются внутренние закалочные напряжения, повышаются вязкость и пластичность, несколько понижается твердость. В зависимости от температуры наг рева различают отпуск низкотемпературный, среднетемпературный и высокотемпературный. Для деталей узлов трения применяют низкотемпературный отпуск с нагревом до 150-200°С. При этом нескол1>ко снижаются нну1ренние напряжения, но твердость остается высокой (58-62 HR ). Структура стали после отпуска состоит из мартенсита отпуска. Этот вид отпуска применяется также для режущих и измерительных инструментов и для изделий, подвергающихся цементации и нитроцементации.  [c.237]

Повышение температуры оглуска стали до 300—350°С несколько снижает характеристики прочности и повышает вязкость. Элект.ролномикроскопическими иоследо-валиями каких-либо выделений в структуре стали после отпуска на 300—350°С не обнаружено. В этом состоянии сталь 1Х15Н4АМЗ представляет конструкционный материал с отличным сочетанием высокой прочности, вязкости и пластичности. Следует отметить, что несмотря на некоторое уменьшение предела прочности, по сравнению со значениями его после отпуска при 200°С, отпуск при 350°С примерно в 1,5 раза увеличивает число циклов до разрушения при испытании образцов с надрезом под действием многократных статических нагрузок также растет сопротивление стали коррозии под напряжением.  [c.192]


Для получения оптимальной жаропрочности высокохромистые стали закаливают ка мартенсит. Структура сталей после отпуска — сорбит и троостит. Для стали 18Х12ВМБФР при 550 °С аю = 250-ь-300, а для стали 15Х12ВНМФ — 200 МПа.  [c.231]

Диаграмма изотермического превращения в стали 18Х2Н4ВА показывает также, что эту сталь нельзя подвергать отжигу, так как аусте-нит в перлитообразные структуры не превращается. Поэтому единственной смягчающей обработкой этой стали является высокий отпуск под критическую точку (660 10°С). Структура стали после такой обработки (в состоянии поставки) представляет собой сорбит с неравномерным распределением углерода (рис. 298,а).  [c.382]

С р е д и е т е м п е р а т у р и ы й (средний) отпуск вьг нолняют при 350—500 °С и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечиваеч выс(жпе пределы уп )угости и выносливости и релаксационную стойкость. Структура стали после среднего отпуска — троостит отпуска или троостомартепсит твердость стали HR 40—50. Температуру от пуска надо выбирать таким образом, чтобы не вызвать необратимой отпускной хрупкости.  [c.217]

Высокотемпературны й (в ы с о к н й) отпуск про водят при 500—680 С. Структура стали после высокого отпуска — сорбит отпуска. Высокий отпуск создает паилучшее соо пюикмшс прочности и пязкости стали.  [c.217]

Предварительная термическая обработка заготовки. Эта операция состоит из закалки и высокого отпуска стали для получения повышенной прочности и вязкости в сердцевине изделия. Отпуск проводят при высокой температуре 600—675 "С, превышающей максимальную температуру [юследующего азотирования и обеспечивающей получение твердости, при которой сталь можно обрабатывать резанием. Структура стали после этого отпуска — сорбит.  [c.242]

Стали перлитного класса содержат до 0,16% С и молибдена до 0,7%, который увеличивает температуру рекристаплизации феррита и тем са.мым повышает жаропрочность. Аналогично, но слабее действует хром. Присадка ванадия измельчает зерно, а также повышает жаропрочность Обычный режим термической обработки - закалка в масле или нормализация при температурах 950.. 1030 с и отпуск при 720. 750 С (Ас1 = 760 С). Предельная рабочая температура 550.. 580 С. Структура сталей после охлаждения на воздухе перлит и карбиды МзС. Область применения сталей приведена в табл 13.  [c.102]

Указанные стадии превращения при отпуске обычно не происходят строго в пределах указанных выше температурных интервалов. Отдельные стадии превращений накладываются друг на друга. Отпуск до 250° С называется низким отпуском. Структурой низкого отпуска является отпущенный мартенсит, состоящий из смеси пересыщенного твердого раствора и сопряженных с ним карбидных частиц. Отпуск стали при 350—500° С называется средним, а при 500—600° С — высоким отпуском. Структурой стали после среднего отпуска является тростит отпуска, тогда как структура стали после высокого отпуска состоит из сорбита отпуст. Тростит и сорбит  [c.123]

Некоторые виды цементита, например третичный цементит или цементит, распределенный в структуре сталей после закалки, выявляются этим травителем лучше, чем с помощью травителей, после обработки которыми карбид железа выглядит темным на фоне окружающей светлой матрицы. Клемм применял его для выявления цементита и у-фазы в закаленных структурах. Для травления не требуется удалять деформированный слой феррит-ной матрицы. Изображение структуры получается более качественным, если сульфидный осадок на всей поверхности феррита одинаково ориентирован. Очень хорошо выявляли цементит с помощью тиосульфата натрия не только в незакалеиных, но и в закаленных и отпущенных сталях [42]. Этот метод позволяет наблюдать за развитием коагуляции цементита, выделяющегося в процессе отпуска. Естественно, для изучения небольшого числа мельчайших частиц цементита важное значение имеет оптическое разрешение.  [c.90]

В ряде случаев по конструктивным или иным соображениям твердость закаленного стального изделия должна быть снижена до определенной величины. Поскольку твердость закаленной стали при отпуске изменяется в зависимости от температуры отпускаемого изделия и времени воздействия на него этой температуры [3], выбор режима отпуска для снижения твердости связан с определенными затруднениями. Исследование зависимости твердости стали 50ХГТР с исходной мартенситной структурой от режима (температуры и времени) отпуска позволило установить, что твердость стали после отпуска можно описать уравнением  [c.208]

Рис. 2. Зависимость ударной вязкости от доли вязкой составляющей в изломах при разном содержании мартенсита в структуре закаленной стали после отпуска на твердость HR =32—35 для сталей 40Х (светлые точки) и 40ХН (темные точки). Температура испытаний —20°С (квадраты) —40°С (треугольники) —70°С (кружки) Рис. 2. <a href="/info/221251">Зависимость ударной</a> вязкости от доли вязкой составляющей в изломах при разном содержании мартенсита в структуре закаленной стали после отпуска на твердость HR =32—35 для сталей 40Х (светлые точки) и 40ХН (темные точки). <a href="/info/28878">Температура испытаний</a> —20°С (квадраты) —40°С (треугольники) —70°С (кружки)
Среднетемпературный (средний) отпуск выполняют при 350— 500 и применяют главным образом для иружип и рессор, а также для штампов. Такой отпуск обеспечивает высокие пределы упругости и вырюсливости и релаксационную стойкость, Структура стали после среднего отпуска — троосгит отпуска или троосто-мартенсит твердость стали 40—50 НР,С. Температуру отпуска надо выбирать таким образом, чтобы не вызвать необратимой отпускной хрупкости.  [c.216]


Улучшаемыми называют такие стали, которые используются после закалки с высоким отпуском (улучшения). Эти стали (40Х, 40ХФА, ЗОХГСА, 38ХНЗМФА и др.) содержат 0,3—0,5% углерода и 1—6% легирующих элементов. Стали закаливают с 820—880 С в масле (крупные детали — в воде) высокий отпуск производят при 500—650 °С с последующим охлаждением в воде, масле или на воздухе (в зависимости от состава стали). Структура стали после улучшения — сорбит. Данные стали применяют для изготовлеши валов, шатунов, штоков и других деталей, подверженных воздействию циклических или ударных нагрузок. В связи с этим улучшаемые стали должны обладать высоким пределом текучести, пластичностью, вязкостью, малой чувствительностью к надрезу.  [c.161]

Структура стали после Оптимальное допустимое содержание немартенситиых Изменение характеристик разрушения под влиянием немартенситных структур (каждых 10 %) и температуры отпуска (каждых 10 °С)  [c.150]

Остаточный аустеиит инструментальных сталей. Его влияние на свойства. Остаточный аустенит фиксируется в структуре закаленных сталей, содержащих более 0,4—0,5% С. Количество остаточного аустенита зависит от его состава, получаемого при нагреве до температуры закалки, условий охлаждения и в меньшей степени от величины зерна. Состав остаточного аустенита определяет его устойчивость при последующем отпуске. Он почти полностью превращается в результате нагрева при 200—350° С нетеплостойких углеродистых н низколегированных сталей и при 500—580° С теплостойких штамповых н быстрорежущих сталей, У полутеплостойких сталей с 6—18% Сг он устойчив до 450—500° С, вследствие чего практически полностью сохраняется при обработке на первичную твердость. Точно также он почти полностью сохраняется в структуре нетеплостойких многих полутеплостойких сталей после отпуска на высокую твердость и может значительно влиять на их основные свойства и почти не сохраняется в теплостойких и полутеплостойких сталях, обрабатываемых на вторичную твердость. Количество остаточного аустенита, присутствующего в инструментальных сталях различных классов после закалки, приведено ниже.  [c.381]

Если исходным является состояние закалки, отпуск в зоне развития обратимой отпускной хрупкости (400-600 0 сопровождается отчетливыми изменениями всех основных механических и физических свойств стали. Однако эти изменения не связаны с собственно процессом охрупчивания. Это становится очевидным, если наблюдать за именейием тех же свойств в результате выдержки в том же интервале температур, но после стабилизирующего неравновесную структуру стали высокого отпуска. По-видимому, только после такого стабилизирующего высокого отпуска или отжига, когда в результате последующей изотермической выдержки или медленного охлаждения в температурном интервале обратимой отпускной хрупкости не получают значительного развития процессы, характерные для отпуска закаленной стали, изменение склонности стали к хрупкому разрушению можно целиком считать эффектом развития обратимой отпускной хрупкости без участия неравновесных кинетических процессов.  [c.16]

Карбидная неоднородность приводит к неравномерному распределению легирующих элементов и к неоднородной структуре стали после закалки и отпуска. Наличие малолегированных участков может служить причиной снижения твердости и красностойкости стали.  [c.38]


Смотреть страницы где упоминается термин Структура стали после отпуска : [c.289]    [c.305]    [c.363]    [c.317]    [c.318]    [c.341]    [c.296]    [c.267]    [c.118]    [c.279]    [c.442]    [c.60]    [c.199]    [c.269]    [c.311]    [c.199]   
Смотреть главы в:

Материаловедение  -> Структура стали после отпуска



ПОИСК



Отпуск

Отпуск стали

Отпуская ось

После

Стали Структура 121 —



© 2025 Mash-xxl.info Реклама на сайте