Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Раскисление металла при сварке

ЛЕГИРОВАНИЕ И РАСКИСЛЕНИЕ МЕТАЛЛОВ ПРИ СВАРКЕ ЧЕРЕЗ ШЛАК  [c.360]

Раскисление металла при сварке. Это процесс восстановления металла из его оксида и перевод кислорода в форму нерастворимых соединений с последуюш им удалением их в шлак. В качестве раскислителей применяют кремний, марганец, титан, алюминий и углерод. Эти веш ества поступают в сварочную ванну из электродной проволоки, покрытий электродов и флюсов, в состав которых они входят, в процессе раскисления железа марганцем, кремнием, титаном и углеродом происходят следующие химические реакции  [c.27]


РАСКИСЛЕНИЕ МЕТАЛЛА ПРИ СВАРКЕ  [c.157]

Раскисление металла при сварке чаще всего производится за счет следующих элементов углерода, кремния, марганца, титана, а иногда алюминия.  [c.74]

ПРОЦЕССЫ РАСКИСЛЕНИЯ МЕТАЛЛА ПРИ СВАРКЕ ПЛАВЛЕНИЕМ  [c.265]

Таблица У.23 Участие углерода в раскислении металла при сварке Таблица У.23 Участие углерода в <a href="/info/274673">раскислении металла</a> при сварке
Каковы общие закономерности раскисления металла при сварке  [c.285]

ОКИСЛЕНИЕ И РАСКИСЛЕНИЕ МЕТАЛЛА ПРИ СВАРКЕ  [c.126]

Раскисление металла при сварке. Применяемые при сварке защитные меры не всегда обеспечивают отсутствие окисления расплавленного металла. Поэтому требуются меры по его раскислению. Раскислением называют процесс восстановления металла из его оксида и перевод кислорода в форму нерастворимых соединений с последующим их удалением в шлак. Окисление и раскисление, в сущности, представляют два противоположных направления одного и того же химического процесса. В общем случае реакция раскисления ста-  [c.64]

Поры могут образовывать также и другие газы, выделяющиеся в металле вследствие реакций восстановления окислов. Поэтому высокая степень раскисленности металла при сварке латуни является основным условием получения плотного бес-пористого шва.  [c.234]

Помимо этой основной физической причины, появлению дефектов способствуют 1) тугоплавкость, повышенная вязкость или высокий удельный вес шлаков электродных покрытий и флюсов 2) недостаточное раскисление металла шва 3) большое поверхностное натяжение шлака, замедляющее слияние отдельных мелких капель в более крупные и всплывание их на поверхность расплавленного металла 4) неудовлетворительная зачистка кромок или отдельных валиков наплавленного металла при сварке многослойных швов 5) затекание шлака в зазоры  [c.660]

Керамические флюсы. Керамические флюсы в отличие от плавленых могут раскислять наплавляемый металл. При сварке под керамическим флюсом раскисление металла шва производится за счет введения в состав флюса свободных металлов-раскислителей, чаще всего ферросплавов, обладающих более высоким, чем железо, сродством к кислороду. В качестве раскислителей в керамических флюсах применяют ферромарганец, ферросилиций, ферротитан, алюминиевый порошок, силикокальций и др. При этом раскисление наплавляемого металла керамическим флюсом принципиально отличается от раскисления элементами, вводимыми в сварочную ванну посредством электродной проволоки.  [c.328]


Ферросплавы и порошки металлов. При сварке под керамическими флюсами для раскисления, легирования и модифицирования наплавляемого металла используют ферросплавы, металлы и сплавы, приведенные в табл. 8.9. Учитывая дефицитность и высокую стоимость указанных материалов, вводить их во флюсы целесообразно только в случае необходимости обеспечения особых свойств наплавляемого металла.  [c.526]

Кремний как компонент флюса положительно влияет на раскисление появляющихся окислов металла при сварке.  [c.125]

Раскисление и легирование металла при сварке  [c.80]

Первоначальная высокая раскисленность как основного, так и добавочного (присадочного) металла при сварке высоколегированных аустенитных сталей позволяет обойтись без необходимости обязательного раскисления металла, что требуется при сварке некоторых углеродистых сталей [84]. Однако при этом необходимо по возможности исключать дополнительное окисление л еталла в процессе выполнения сварки.  [c.49]

Удаление фосфора из металла при сварке ряда сплавов также имеет большое значение для получения необходимых конечных свойств. Способы удаления фосфора обычно аналогичны способам, применяемым для получения минимального содержания серы. Однако при сварке медных сплавов в ряде случаев фосфор специально вводится сварочными материалами (присадкой, флюсами) для необходимого раскисления ванны.  [c.61]

Аналогичные процессы раскисления с образованием газообразной фазы могут происходить при взаимодействии окисленного металла с водородом. Особенно сильное влияние на свойства сварного соединения такое раскисление оказывает при сварке меди.  [c.268]

При сварке титана и алюминия — металлов очень высокой химической активности — раскисление осаждением невозможно, поэтому их сварку осуществляют с внешней защитой от окружающей среды — в инертных газах, в вакууме или под флюсами, не содержащими кислородных соединений.  [c.330]

Советские ученые разработали теорию металлургических процессов, вопросы термических воздействий и напряжений при сварке, а также теоретические основы сварочного металловедения и создали теорию сварочных процессов. Эта теория позволила глубоко проанализировать существо вопросов окисления и азотирования в процессе сварки, раскисления наплавленного металла, действия защитных газов, флюсов, сварочных шлаков. Она же определила обоснованный подход к вопросам разработки электродов и их покрытий и обусловила возможность управления этими процессами и регулирования их в нужном направлении в зависимости от конкретных потребностей производственной практики [79].  [c.140]

А л о в А А Раскисление металла шва при дуговой сварке, Автогенное дело >6 1, 1947.  [c.357]

Взаимодействие расплавленного металла и шлака определяется составом шлака и условиями перераспределения растворимых соединений между контактирующими жидкими фазами. Шлаки образуются в результате расплавления покрытий электродов или флюсов. Они состоят из смеси оксидов, фторидов, хлоридов различных элементов и чистых металлов. В результате взаимодействия со шлаком происходят раскисление металла сварочной ванны, удаление вредных примесей путем связывания их в нерастворимые соединения и вывода в шлак, легирование шва определенными элементами для восполнения их выгорания при сварке или придания шву специальных свойств.  [c.228]

FeO, таким образом, связывается в стойкий силикат, который переходит в шлак. При большом содержании в шлаке силиката кремния реакция может пойти в обратную сторону, и металл будет окисляться, растворяя FeO. Поэтому содержание SiOa в шлаке должно быть в количестве, необходимом для диффузионного раскисления. Следует иметь в виду, что SiO2 делает шлак длинным , малоподвижным и ухудшает его газопроницаемость. При необходимости добавляют в покрытие другие материалы, повышающие жид-котекучесть шлака. Из приведенных выше химических реакций видно, что раскисление металла при сварке осуществляется при введении в покрытие химических элементов-раскислителей Мп, Si, Al, T и др. в виде порошка или ферросплавов (сплавов с железом), а также при увеличении содержания этих элементов в электродных стержнях.  [c.120]

Некоторые закономерности раскисления металла, при сварке электродами с покрытиями фтористокальциевого типа могут быть рассмотрены на основе экспериментальных исследований Т. Н. Дубовой. Если в покрытие на базе мрамора ( 50%) и плавикового шпата (—20%) вводить различные количества ферросилиция, то можно получить различные количества кремния, отнесенные к металлической части электрода [81 ]э. Зависимость количества кремния в наплавленном металле [811н.м от [81 ]э для этого случая показана на рис. У.35, а. Как следует из этого рисунка, даже при отсутствии кремния в проволоке ([81 ]э.п—0) и в покрытии, т. е. при [81]э = О, в наплавленном металле анализом обнаруживается около 0,04- 0,05% 81 как результат восстановления ЗЮг, находящегося  [c.269]


Высокие температуры, используемые при сварке плавлением, с одной стороны, понижают термодинамическую устойчивость оксидов, как это было показано в п. 9.2, но, с другой стороны, скорость их образования резко увеличивается и за очень небольшое время сварочного цикла металлы поглощают значительное количество кислорода. Поглощенный кислород может находиться в металле или в растворенном состоянии в виде оксидов (обычно низшей степени окисления), или субоксидов (TieO, TisO, Ti20), а также может создавать неметаллические включения эндогенного типа, образовавшиеся при раскислении металла более активными элементами. И то, и другое резко снижает качество сварных соединений, особенно пластичность металла шва. Исследования этого вопроса показали, что основная масса кислорода в металле обычно находится в неметаллических включениях [20]. Источниками кислорода в металле при сварке служат окислительно-восстановительные реакции между металлом и атмосферой сварочной дуги, металлом и шлаками, образующимися в результате плавления флюсов или при разложении и плавлении компонентов электродного покрытия, а также при взаимодействии с наполнителями порошковой проволоки.  [c.317]

Кислород — вредная прймесь в металле при сварке, снижающая пластические свойства металла, поэтому при всех видах сварки предусматривается процесс раскисления металла шва до допустимой нормы. При сварке металлов высокой активности (А1, Ti, Zr) следует создавать бескислородную атмосферу — аргон, гелий, вакуум, галидные флюсы, так как раскислителей для таких металлов подобрать нельзя.  [c.403]

Для сварки толстой латуни (40 мм и более) ВНИИавтогенмаш разработал способ порошковой газофлюсовой сварки. Сущность способа заключается в том, что сварку ведут спец)1альной горелкой, в пламя которой с помощью струи азота или осушенного воздуха непрерывно подается дозированное количествЬ порошкообразного флюса из бачка флюсопитателя. Горелка имеет водяное охлаждение, позволяющее работать в тяжелых условиях, при сильном нагреве мундштука. В качестве флюса используют техническую (не обезвоженную) буру. Расход флюса равен 2 г/кг расплавленного металла. При сварке латуни ЛЖМц толщиной 40 мм получают плотный, хорошо раскисленный металл шва с пределом прочности 42 кгс мм и относительным удлинением 34%.  [c.133]

Для электродов используются стержни, по составу идентичные основному металлу. При сварке раскисленной меди, содержащей не более 0,01% кислорода, можно применять электродные стержни из бронзы БрКЛ1цЗ-1 с покрытием ЗТ. Сварка этими электродами, а также электродами с покрытием Комсомолец-100 и ЗТ производится постоянным током обратной полярности. Покрытие ММЗ-2 наносится окунанием толщиной 0.35—0,8 мм на сторону (в зависимости от диаметра). После нанесения покрытия электроды просушиваются при комнатной температуре в течение 4—6 час., а затем прокаливаются при температуре 200—400° в течение 3—4 час. Сварка производится на постоянном токе обратной полярности или на переменном токе. При сварке на переменном токе повышается разбрызгивание.  [c.448]

Наряду с плавлеными флюсами в некоторых случаях применяются неплавленые (керамические) флюсы, способствующие легированию наплавленного металла при сварке малоуглеродистой проволокой и обеспечивающие интенсивное раскисление металла сварочной ванны. Сварка под керамическими флюсами может осуществляться на постоянном и переменном токе. Режимы сварки нелегированных сталей примерно те же, что и при сварке под флюсом типа АН-348А или ОСЦ-45.  [c.199]

Для электродов используются стержни, по составу идентичные основному металлу. При сварке раскисленной меди, содержащей не более 0,01% кислорода, применяют электродные стержни из бронзы БрКМцЗ-1 с покрытием ЗТ. Сварка этими электродами, а также электродами с покрытием Комсомолец-100 и ЗТ производится постоянным током обратной полярности. Покрытие ММЗ-2 наносится окунанием толщиной 0,35—0,8 мм иа сторону (в зависимости от диаметра). После нанесения покрытия электроды просушиваются при комнатной температуре в течение 4—6 ч, а затем прокаливаются при  [c.61]

В качестве присадочного металла при сварке пропано-бутано-кислородным пламенем следует применять металл, обеспечивающий раскисление расплавленного металла сварочной ванны, так как пламя при жидких газах бывает окислительным. Поэтому применяют легированную сварочную проволоку марки С8-10ГС, Св-12ГС или Св-08ГМ. Применение низкоуглеродистой проволоки Св-09 и т. п. не рекомендуется (табл. 32).  [c.151]

В связи с ЭТИМ При наличии СОг в газовой фазе необходимо применять меры для предохранения металла при сварке от окисления, либо раскислять окисленный металл. Поэтому применение СО2 в качестве защитного газа может обеспечить защиту от азота воздуха, но не исключает окисления. В связи с этим для раскисления металла в электродную проволоку обычно вводятся в необходимом количестве раскнслители, как правило, 51 и Мп, при определенном соотношении ме>вду ними.  [c.224]

В качестве флюса используется необезвоженная бура (прокаленная бура сильно выдувается пламенем и поэтому применять ее нецелесообразно) расход флюса—2 г/кг расплавленного металла. При сварке этим способом латуни ЛЖМЦ толщиной 40 мм. получается плотный, хорощо раскисленный металл щва, с пределом прочности 42 кГ мм и относительным удлинением 3 4 о/  [c.237]

Особенности металлургических процессов при сварке под керамическими флюсами. Керамические или неплавленые флюсы для сварки металлов позволяют сохранять все преимущества автоматической сварки под слоем плавленого флюса (малые потери) металла, высокая производительность, высокое качество сварных соединений), но в то же время позволяют легировать и раскислять металл сварочной ванны в очень широких пределах. Керамические флюсы представляют собой порошки различных компонентов, образующих шлаковую фазу, изолирующую металл от окисления, н ферросплавы или свободные металлы для раскисления и легирования. Все эти порошковые материалы замешивают на растворе силиката натрия NaaSiOs ( жидкое стекло ) и подвергают грануляции на специальных устройствах. После этого их просушивают, прокаливают для удаления влаги и хранят в герметической таре. Так как в процессе изготовления они не подвергаются нагреву, то все даже активные металлы в них сохранены и при плавлении флюса они переходят в металл шва, раскисляя его и легируя до нужного состав а.  [c.373]


В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]

Корпуса турбин высокого и промежуточного давлений из-за их сложной формы и толстых сечений почти исключительно изготавливают методом литья в песчаные формы, и только внутренние корпуса высокого давления для высокотемпературных турбин изготавливают на станках из специальных поковок аустенитных сталей. Отливки для корпусов турбин (и некоторых паровых камер) должны быть очень высокого, качества и как можно лучше сопротивляться ползучести. Правильный выбор и очень тщательный контроль аа изготовлением стали и последующей отливкой имеет существенное значение. Сам литой металл не только должен обладать требуемыми свойствами высокотемпературной прочности и пластичности, но и удовлетворительно свариваться, так как возможно подсоединение паропроводов. Кроме того, дефекты, получающиеся при отливке, должны быть исправлены сваркой. Металл д 1я отливки может быть получен из скрапа или из жидкого чугуна с применением кислородного дутья. В обоих случаях ркрап или руда должны быть тщательно отобраны по минимальному количеству примесей, причем материалы футеровки печи н топливо не должны вносить в них серу и фосфор. Литье в песчаные формы должно производиться полностью раскисленной сталью, предотвращающей возникновение усадочной пористости металла при затвердевании.  [c.206]


Смотреть страницы где упоминается термин Раскисление металла при сварке : [c.122]    [c.260]    [c.111]    [c.114]   
Смотреть главы в:

Справочник рабочего-сварщика  -> Раскисление металла при сварке

Справочник сварщика  -> Раскисление металла при сварке



ПОИСК



Раскисление

Раскисление металла

Раскисление металла при сварк

Сварка металла



© 2025 Mash-xxl.info Реклама на сайте