Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Случай динамически симметричного тела

Случай динамически симметричного тела  [c.392]

Интегрирование дифференциальных уравнений движения твердого тела, имеющего одну неподвижную точку, представляет значительные математические трудности. Мы рассмотрим лишь наиболее простые случаи, а именно случай вращения динамически симметричного тела вокруг неподвижной точки по инерции (случай Эйлера) и случай движения под действием силы тяжести, когда тело имеет относительно неподвижной точки ось динамической симметрии, а центр тяжести лежит на этой оси (случай Лагранжа ).  [c.322]


Для отыскания периодических решений, на наш взгляд, более естественно использовать уравнения движения в гамильтоновой форме. Для канонических систем дифференциальных уравнений метод малого параметра Пуанкаре хорошо разработан и дает более сильные результаты. Эта идея впервые реализована в работе [34] для случая вращения динамически симметричного тела в ньютоновском поле сил и независимо автором [38] в задаче о движении несимметричного тяжелого твердого тела.  [c.106]

Случай динамически симметричного твердого тела. Пусть по аналогии с трехмерным случаем выполнены равенства  [c.132]

Этот случай был указан Г. Кирхгофом для динамически симметричного тела вращения, движущегося в идеальной жидкости. Он также проинтегрировал уравнения движения в эллиптических функциях.  [c.171]

Совокупность динамических и кинематических уравнений Эйлера является системой шести нелинейных дифференциальных уравнений первого порядка относительно ф, гр, 0 и сот,, со . При заданном моменте внешних сил М и известных начальных условиях определение движения тела сводится к указанной системе дифференциальных уравнений. В общем виде эта задача не решена. Однако несколько частных случаев движения тела около неподвижной точки всесторонне исследованы и уравнения их проинтегрированы. Среди них наиболее простой и широко применяемый в технике случай движения симметричного гироскопа, для которого А = В.  [c.180]

Случай Лагранжа — Пуассона. В этом случае тело, имеющее одну неподвижную точку О, находится под действием только силы тяжести и форма этого тела такова, что для него А=В С, т. е. эллипсоид инерции для неподвижной точки О тела есть эллипсоид вращения, и центр тяжести тела лежит на подвижной оси Oz на некотором расстоянии от неподвижной точки О. При этом ось Oz является осью симметрии эллипсоида инерции и называется оаю динамической симметрии тела. Такое тело, имеющее одну неподвижную точку, часто называют симметричным гироскопом (рис. 391). Его положение определяется тремя Эйлеровыми углами <р, ф и 0.  [c.709]

Другой случай, исследованный Ф. Л. Черноусько в этой же работе, предполагает, что /г2<С1, то есть тело близко к динамически симметричному эксцентриситет орбиты произволен (0<б<1). В качестве независимой переменной в этом случае возьмем время т, отсчитанное от перигея и отнесенное к периоду обраш,ения спутника, деленному на 2я  [c.93]


Обобщенный случай Лагранжа. При этом тело является динамически симметричным, а все три силовых центра лежат на оси динамической симметрии. Согласно результатам по приведению, этот случай сводится к обычному волчку Лагранжа в одном поле с соответствующим интегралами 1 = (М, 7), 2 = Мз ( 3 гл. 2).  [c.208]

Рассмотрим важный с практической точки зрения случай движения динамически симметричного твердого тела, когда А = В С. Движение тела в этом случае описывается элементарными функциями и называется регулярной прецессией.  [c.129]

Общий случай движения системы. Динамическая модель одномассового ротора в поле сил тяжести представляет собой гироскоп с гибким валом и присоединенным к валу упругим элементом, причем центр масс гироскопа может лежать ниже (рис. 1) или выше (рис. 2) точки опоры [15]. Гироскоп рассматривается как тяжелое, симметричное, абсолютно твердое тело, протяженное вдоль оси и закрепленное на невесомом гибком валу. Точка опоры (подвеса) гироскопа О неподвижна, масса тела nii его полярный и центральные экваториальные моменты инерции соответственно l и Ai, расстояние OOi от точки опоры до центра инерции твердого тела I длина гибкого вала Жесткость упругого элемента, действующего на вал в точке подвеса, k [кгс-см/рад], а его восстанавливающий момент пропорционален углу между вертикалью и касательной к упругой линии вала в указанной точке Вектор момента направлен перпендикулярно к плоскости, образованной этими прямыми  [c.190]

При движении симметричного твердого тела с неподвижной точкой в поле тяжести (случай Лагранжа) угол 0 между вертикалью и осью динамической симметрии сохраняет во время движения постоянное значение. Какое движение тела реализуется при этих условиях  [c.111]

Связанную с телом систему координат обозначим через Охуг (рис. 6.1). Эта система координат выбирается таким образом, что тензор инерции в данной системе имеет диагональный вид diag ЦJJJ . Распределение масс примем таким, что продольная главная ось инерции совпадает с осью СО (это ось Ох а оси Оу и Ог лежат в плоскости диска Р и образуют правую систему координат. Более того, рассматривается случай динамически симметричного твердого тела, т.е.  [c.237]

Рассмотрим сначала случай, когда тело динамически симметрично и осью симметрии является ось ОХ связанной системы координат OXYZ. Мы рассматриваем связанную систему коор-  [c.11]

В главе 6 некоторые результаты плоской динамики переносятся на пространственный случай, в связи с чем подробно ставится пространственная задача. В частности, найден полный список интефалов в задаче о пространственном движении динамически симметричного закрепленного твердого тела, помещенного в поток набегающей среды. Данная система с переменной диссипацией с нулевым средним топологически эквивалентна пространственному движению твердого тела в сопротивляющейся среде, при котором на тело наложена некоторая связь. Пространственное движение твердого тела в сопротивляющейся среде, при котором центр масс совершает прямолинейное равномерное движение, также представляет собой динамическую систему с переменной диссипацией с нулевым средним. Ее качественное исследование позволяет предъявить удобную пространственную систему сравнения для исследования многих систем с переменной диссипацией с ненулевым средним [170, 179, 202, 205,207,276].  [c.36]

Для рассматриваемого случая тело является динамически симметричным аг = 2, а центр масс находится на оси динамической симметрии Г1 = Г2 = 0. Дополнительный интеграл имеет вид F , = М3 = onst.  [c.102]

Лагранжев случай движения весомого твёрдого тела вокруг неподвижной точки. Симметричный гироскоп. Пусть весомое твёрдое тело S движется вокруг неподвижного полюса О, для которого эллипсоид инерции тела является поверхностью вращения. Пусть при этом центр масс тела лежит на оси вращения эллипсоида инерции, или, как говорят, на динамической оси симметрии тела ( 252). Этот случай движения тела носит название лагранжева случая движения весомого твёрдого тела, а само тело называется HMMeTpH iHbiM весомым гироскопом. Уравнения движения (46.21) на стр. 513 для названного случая примут вид  [c.553]


В данной работе рассматривается задача стабилизации положения равновесия орбитальной тросовой системы (ОТС) при помощи одностепенных гироскопических стабилизаторов — статически и динамически уравновешенных симметричных маховиков. ОТС состоит из тела-носителя с маховиками и присоединенного к нему на длинном весомом тросе зонда-спутника. Зонд-спутник считается материальной точкой, трос — гибкой нитью, не испытывающей сопротивления на изгиб и кручение. Предполагается, что центр масс тела-носителя с маховиками (первый случай) и орбитальной тросовой системы (второй случай) совершает движение по известной кеплеровской круговой орбите в ньютоновском центральном поле сил. Найдены частные решения нелинейных дифференциальных уравнений с обыкновенными и частными производными, соответствующие положениям равновесия ОТС в орбитальной системе координат. Главные центральные оси ОТС коллинеарны осям орбитальной системы координат. Трос с зондом расположен вдоль радиуса орбиты и направлен в сторону притягивающего центра (первый и второй случаи). Трос с зондом расположен вдоль радиуса орбиты и направлен в сторону противоположную от притягивающего центра (первый и второй случаи).  [c.403]


Смотреть страницы где упоминается термин Случай динамически симметричного тела : [c.426]    [c.466]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Случай динамически симметричного тела



ПОИСК



274, 323—327 симметричный

Движение динамически симметричного тела в случае Эйлера. Регулярная прецессия

Симметричный случай



© 2025 Mash-xxl.info Реклама на сайте