Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые случаи интегрирования уравнений и исследования движения

НЕКОТОРЫЕ СЛУЧАИ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ И ИССЛЕДОВАНИЯ ДВИЖЕНИЯ  [c.390]

Расчет динамического поведения конструкции заключается в определении перемещений и напряжений как функций времени. Динамический расчет может в качестве предварительного этапа содержать исследование собственных колебаний, в результате чего определяются частоты и формы собственных колебаний конструкции в некоторых случаях эта информация представляет и самостоятельный интерес. Другой подход заключается в прямом интегрировании матричного уравнения движения с помощью тех или иных численных процедур.  [c.357]


Задача сводится к интегрированию уравнения Лапласа при линейных гра-280 ничных и начальных условиях. И Коши, и Пуассон- подвергли детальному исследованию волны, вызываемые местным возмущением свободной поверхности бесконечно глубокого и неограниченного протяженного бассейна, позже были исследованы также некоторые случаи, соответствующие конечной глубине и наличию стенок (сосуда). Уже в XX в. было показано, что для сосуда конечных размеров математическая постановка задачи должна быть существенно изменена. Тем не менее теория Коши — Пуассона бесконечно малых волн имела и имеет большое значение при изучении волновых движений она достаточно хорошо оправдывается опытом, и с ее помощью были выявлены некоторые существенные черты волновых движений.  [c.280]

Мы покажем, что если на рассматриваемое нестационарное движение правильного виража наложить дополнительные условия оптимальности некоторых интегральных характеристик движения, то задача интегрирования исходных уравнений центра масс самолета существенно упрощается и в ряде случаев можно выполнить аналитическое исследование процесса движения. Мы увидим далее, что для оптимального правильного виража его основные параметры находятся в квадратурах.  [c.223]

При исследовании (в общем виде) движения трех или нескольких тел встречаются большие затруднения решение дифференциальных уравнений не может быть получено в конечном виде - приходится прибегать к численному интегрированию составленных дифференциальных уравнений. В случае трех и более тел математически невозможно исследовать формы орбит и характер движения, за исключением некоторых частных случаев.  [c.109]

Предварительные замечания. Точное интегрирование дифференциальных уравнений движения реальной механической системы возможно только в очень редких случаях. Эти случаи являются скорее исключением, чем правилом. Поэтому разработано много методов, позволяющих проводить приближенное исследование систем, уравнения движения которых не могут быть решены точно, но в то же время некоторая упрощенная задача, называемая невозмущенной задачей, допускает точное решение. Совокупность этих методов образует теорию возмущений, которая находит самое широкое применение во всех областях науки и техники, где рассматриваются процессы, описываемые дифференциальными уравнениями.  [c.388]

Исследование тех случаев, когда периодические движения вызываются непрерывным потоком воздуха, как, например, в органных трубах, убедило меня в том, что такое действие может быть вызвано лишь прерывной или, по крайней мере, весьма близко подходящей формой движения воздуха, и это привело меня к обнаружению некоторого обстоятельства, которое должно быть принято в расчет при интегрировании гидродинамических уравнений, но с которым до сих пор, насколько я знаю, не считались принимая же его в соображение, мы в самом деле в тех случаях, где вычисление можпо довести до конца, получаем именно те виды движения, какие наблюдаем в действительности. Дело в следующем.  [c.42]


Исследованию течений газа с ударными волнами посвящены многочисленные работы, относящиеся главным образом к течениям, зависящим от двух переменных (одномерные неустановившиеся движения, плоские и осесимметричные сверхзвуковые установившиеся течения). Основным средством расчета таких течений при наличии ударных волн умеренной и большой интенсивности является метод характеристик и его упрощенные модификации, связанные часто с трудно контролируемыми допущениями. Поэтому при оценке точности приближенных методов особая роль принадлежит задачам об автомодельных движениях, решение которых в случае двух независимых переменных удается получить с желаемой степенью точности путем интегрирования обыкновенных дифференциальных уравнений. В ряде работ изучены неустановившиеся автомодельные движения, которые возникают при расширении в газе плоского, цилиндрического и сферического поршня с постоянной скоростью [1, 2] и со скоростью, меняющейся со временем по степенному закону, но при нулевом начальном давлении газа [3], течения, образующиеся нри точечном взрыве в среде с нулевым начальным давлением [4, 5], и некоторые другие. При установившемся обтекании сверхзвуковым потоком изучены автомодельные течения, возникающие при обтекании клина и круглого конуса [6, 7.  [c.261]

При исследовании малых колебаний около устойчивого равновесного состояния во многих случаях можно (не совершая большой погрешности) сохранять в выражениях, зависящих от координат и скоростей, только члены низшего (относительно этих величин) порядка, отбрасывая все другие как бесконечно малые высших порядков. Такая операция приводит обычно решение задачи о малых колебаниях к интегрированию линейных дифференциальных уравнений с постоянными коэффициентами. Она называется линеаризацией уравнений движения системы. Колебания, описываемые линеаризованными дифференциальными уравнениями, называются линейными колебаниями. Линеаризация уравнений малых колебаний может иногда оказаться результатом некоторых конструктивных изменений в рассматриваемой или проектируемой системе, что до известной степени служит основанием ее допустимости.  [c.69]

Одним из мощных методов исследования гидродинамических движений является метод подобия. Применение этого метода основано на том, что уравнения гидродинамики идеальной жидкости не содержат каких-либо характерных постоянных с размерностью длины или времени. Масштаб движения в каждом конкретном случае задается начальным распределением, которое предполагается известным заранеё. Таким образом, имеется возможность для пересчета движений различного масштаба посредством преобразования подобия, сохраняющего неизменными уравнения движения. Это обстоятельство широко используется в экспериментальной практике, когда необходимо воспроизвести явление большого масштаба в лабораторных условиях. Метод подобия эффективно применяется и для интегрирования дифференциальных уравнений движения. Часто оказывается возможным выбрать начальное распределение таким образом, чтобы последующие распределения в различные моменты времени были подобны друг другу. Такое движение называют автомодельным. Автомодельность движения дает возможность уменьшить число независимых переменных, что значительно упрощает проблему отыскания решения, а в некоторых случаях позволяет получить решение задачи в аналитической форме.  [c.270]

Некоторая аналогия в механическом поведении гибких нитей и тонких мембран позволила вскоре же после исследования явления удара по гибкой нити перейти к аналогичному анализу гибкой мембраны. Первое приближенное решение при условии пренебрежения кольцевыми напряжениями в круглой мембране получил Д. М. Григорян (1949). В ряде последовавших за этим работ это допущение было снято. Так, М. П. Галин (1949) рассмотрел удар по круглой мембране в одной точке телом с постоянной скоростью движения. Позже рассматривался удар по мембране осесимметричным телом (У. Бектурсунов, 1966). В последнем случае принималось, что радиальные и поперечные движения не связаны друг с другом и что решение задачи может быть получено с помощью раздельного интегрирования двух различных уравнений распространения волн.  [c.316]


Первый коэффициент вязкости х является основным. Для его определения существует множество различных способов, основанных на применении тех конечных формул, которые могут быть получены в результате интегрирования соответственных дифференциальных уравнений с использованием соотношений (11.18) для частных случаев движения жидкости. О некоторых из этих способов мы будем говорить ниже. Что же касается второго коэффициента вязкости, необходимость учёта которого может возникать только при рассмотрении того движения жидкости или газа, в котором явно проявляется свойство их сжимаемости, то до последнего времени его совершенно не учитЬвали. И только в связи с исследованиями Л. И. Мандельштама и М. А. Леонтовича ) влияния внутренних процессов с большим временем релаксации на распространение звука в жидкости было указано на необходимость учёта второго коэффициента вязкости. В отдельных случаях значение второго коэффициента вязкости может намного превышать значение основного коэффициента вязкости. Но приборов по определению второго коэффициента вязкости пока пе предложено.  [c.66]

В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]

Первые общие теоремы касаются движения центра массы н были даны Ньютоном в Началах . Десять интегралов н теоремы, к которым онн приводят, были известны Эйлеру. Следующим общим резуль ятом было доказательство существования и рассмотрение свойств неизменной плоскости Лапласом в 1784 г. В зимнем семестре 1842 4i г. Якоби прочел курс лекций по дишмнке в Кенигсбергском университете. В этом курсе он привел результаты некоторых очень важных исследований интегрирования диференциальных уравнений механики. Во всех случаях, когда силы завися г от одних координат и когда существует потенциальная функция (условия, выполненные в задаче я тел), он доказал, что если все интегралы, кроме двух, найдены, то последние два могут быть всегда найдены. Он также показал, развивая некоторые исследования В. Гамильтона, что задача может быть приведена к решению диференциального уравнения с частными производными, порядок которого в два ряза меньше порядка первоначальной системы. Лекции Якоби опубликованы в дополнительном томе к собранию его сочинени.1. Они очень важны сами по себе, а также абсолютно необходимы как вступление к чтению составивших эпоху мемуаров Пуанкаре и должны быть доступны для каждого изучающего небесную механику.  [c.246]


Смотреть страницы где упоминается термин Некоторые случаи интегрирования уравнений и исследования движения : [c.100]   
Смотреть главы в:

Движение искусственного спутника относительно центра масс  -> Некоторые случаи интегрирования уравнений и исследования движения



ПОИСК



Движение в случае G2 ВТ

Интегрирование

Интегрирование уравнений

Интегрирование уравнений движени

Исследование случая

Исследование уравнений движения

Уравнения движения — Интегрирование



© 2025 Mash-xxl.info Реклама на сайте