Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обеспечение вакуума

Для беспрепятственного пробега электронов от катода до экрана, для предотвращения газового разряда между катодом и анодом и окисления раскаленного катода в колонне микроскопа должен быть обеспечен вакуум (0,013 Па). Вакуум обеспечивается непрерывной работой ротационного и диффузионного насосов.  [c.32]

Спаивание стекла с металлом. При введении металла внутрь стеклянного прибора или установки с целью создания ввода для прохождения тока требуется особая герметичность спая, а иногда — обеспечение вакуума. Бывают условия, когда металлический ввод надо только закрепить в стекле, что значительно проще. При всех условиях необходимо, чтобы коэффициенты термического расширения стекла и металла были бы близки друг к другу (см. табл. 3 и 4).  [c.69]


В тех криогенных установках, в которых вакуум используется в качестве изоляции, важно знать величину газовыделения металлов в вакууме в процессе длительной эксплуатации. Обеспечение вакуума в таких конструкциях является условием их нормальной работоспособности.  [c.279]

Сварочные диффузионные вакуумные установки состоят из следующих основных узлов вакуумной системы для обеспечения вакуума в рабочей камере, системы для создания давления на соединяемые детали, системы для подъема и опускания камеры, электросистемы и системы автоматизации (привод. и управление узлами установки).  [c.297]

В последнее время все большее распространение находят безнасосные вакуумные захваты, вакуум в которых создается при одноразовом изменении герметично замкнутого объема. Основным преимуществом этого вида захватов является то, что они не требуют средств создания и обеспечения вакуума, а также воздухопроводной арматуры.  [c.176]

Схема введения ультразвуковых колебаний при обработке слитков, выплавляемых в дуговых и электрошлаковых печах, показана на рис. 40. Колебания излучателя вводятся через наплавленную, т. е. закристаллизовавшуюся часть металла. Излучатель связан через волновод с колеба-, тельной системой и преобразователем (не показан). Излучатель жестко связан с наплавляемой частью металла и является нижним электродом, заземляемым через контакт. Как известно, расплавление электрода при дуговом переплаве происходит под влиянием тепла, создаваемого электрической дугой между электродом и частью слитка. По мере расхода электрода зона закристаллизовавшегося металла растет, образуя слиток, а электрод непрерывно опускается, причем расстояние между ними и слитком остается неизменным. Процесс переплава происходит в вакууме, в водоохлаждаемом кристаллизаторе. В отличие от дугового переплава, при электрошлаковом переплаве тепло развивается в результате пропускания тока через шлаковую ванну, через которую падают капли расплавленного металла. Как и при дуговом переплаве, электрод по мере роста слитка непрерывно опускается. Этот процесс не требует создания вакуума в кристаллизаторе. На приведенных схемах (см. рис. 40) не отражены решения, связанные с такими важными вопросами, как обеспечение вакуума в кристаллизаторе при вводе колебаний (в случае дугового переплава),  [c.488]

Схематический вид установки показан на рис. 48. Во время работы она располагается непосредственно под дуговой печью типа ЦЭП-317 так, чтобы рабочий волновод входил в кристаллизатор, и его торец одновременно является затравкой для слитка. Обеспечение вакуума осуществляется различными способами (на рис. 48 приведен вариант с использованием уплотнения типа Вильсона). После окончания плавки установка (преобразователь с волноводной системой и баком охлаждения) откатывается в сторону и слиток вынимается. На этой печи обрабатываются слитки весом до 350 кг. Следует отметить, что мощность этой ультразвуковой установки может обеспечить обработку слитков значительно большего веса.  [c.512]


Это соотношение показывает, что абсолютную температуру можно интерпретировать как статистическое свойство, определяемое поведением большого числа молекул. Сама по себе концепция температуры теряет свое значение, когда число молекул мало. Например, вполне разумно измерять температуру газа в объеме 1 фут (28,3 л) при обычном давлении, когда число молекул в этом объеме порядка 10 или больше. Однако если в сосуде создать вакуум до такой степени, чтобы в нем было только 10 молекул, то понятие температура газа потеряет смысл, поскольку число молекул недостаточно для обеспечения статистическою распределения энергии. Любой прибор, измеряющий температуру, введенный в сосуд, покажет температуру, определяемую скоростями энергетического обмена (главным образом путем радиации) между измеряемым прибором и стенками сосуда. Однако указанную этим прибором температуру нельзя рассматривать как температуру 10 молекул газа в сосуде. Во всех последующих уравнениях термодинамические свойства будут выражены в значениях абсолютной температуры Т вместо л.  [c.107]

Дефекты, возникающие на первичном этапе, — при плавке, в значительной степени устраняются ведением плавки под вакуумом в электро- или электронно-лучевых печах, рафинированием стали, электрошлаковым переплавом и т, д. Дефекты слитка уменьшают разливкой под вакуумом, обеспечением равномерной кристаллизации слитка, а также применением способа непрерывной разливки.  [c.153]

Для обеспечения свободного движения электронов от катода к аноду и далее к изделию, для тепловой и химической изоляции катода, а также для предотвращения возникновения дугового разряда между электродами в установке для сварки создается глубокий вакуум порядка 133-10 Па, обеспечиваемый вакуумной насосной системой установки.  [c.16]

Поэтому для обеспечения надежной работы насадка предельное значение вакуума не следует допускать более  [c.103]

Изложенные выше требования к измерительным системам давления относятся в известной степени и к вакуумным измерительным системам. Однако в последних имеются свои особенности, связанные с обеспечением герметичности, выбором материала для элементов измерительной линии и ее соединений. Все эти и другие вопросы методики измерения вакуума рассмотрены в [2].  [c.170]

Если сравнить истечение через отверстие (без насадка) с истечением через насадок, то будет ясно, что на участке потока от сечения а—а до сжатого (см. рис. 6.32) движение при наличии насадка происходит под большим напором, чем при отсутствии насадка. Поэтому скорость в сжатом сечении насадка будет больше, чем в сжатом сечении за отверстием при одинаковом напоре Я. А поскольку степень сжатия струи внутри насадка и за отверстием практически одинакова, то при одинаковой площади отверстия и насадка расход через последний будет больше, чем через отверстие. Очевидно, этот выигрыш будет тем больше, чем глубже вакуум в сжатом сечении. Правда, при наличии насадка в потоке появляются дополнительные потери, которых нет в струе, вытекаюш,ей через отверстие. Это потери на расширение потока внутри насадка и потери на трение по его длине. Однако, как показывают расчеты и эксперимент, при длине насадка /н = (3. .. 4) эти потери намного меньше, чем повышение действующего напора. Поэтому данный насадок увеличивает расход. Этот эффект возрастает, если применить конический расходящийся насадок (рис. 6.34, б), в котором должен быть обеспечен безотрывный режим течения. Сведения о насадках других форм приведены в работе [1].  [c.178]

В случае выхода из строя ТНД к ресиверу подсоединяют трубу и ставят заглушку таким образом, чтобы пар из ТВД, минуя ТНД, непосредственно направлялся в конденсатор. Для снижения давления пара, поступаюш,его в конденсатор, трубу снабжают дроссельной шайбой. В обоих случаях параметры свежего пара перед быстрозапорным клапаном снижают в соответствии с указаниями завода-строителя. При работе с отключенной ТНД для обеспечения требуемого вакуума в конденсаторе на уплотнения ТНД по-прежнему подают пар (или устанавливают специальные уплотнительные воротники).  [c.337]

Особое место занимает проблема незагрязняющей плавки металла. Основными источниками загрязнения (помимо примесей, поступающих с вводимыми в печь материалами) являются реакции компонентов расплава с материалами тигля и атмосферой печи, реакции в печи между компонентами вводимых материалов и механическое размывание тигля. Реакции с атмосферой печи исключают герметизацией последней и обеспечением соответствующего вакуума или контролируемой атмосферы влияние вредных реакций между компонентами вводимых материалов можно уменьшать путем выбора последовательности их введения и другими технологическими приемами.  [c.7]


Продолжаются работы но исследованию элементарных частиц в ускорителях и космоса в естественном состоянии. И если когда-то удастся разделить ныне неделимый нейтрон или же освободить фантастическую энергию сверхплотной материи вакуума, то проблема обеспечения человечества энергией будет решена навсегда.  [c.96]

Рассмотрены вопросы экспериментального исследования твердости, характеристик упругости, кратковременной и длительной прочности при растяжении, сжатии, изгибе. Описаны системы обеспечения силовых и температурных режимов нагружения, даны примеры их расчетов. Особое внимание уделено обеспечению точности измерения температур, нагрузок и деформаций при определении механических характеристик материалов в условиях вакуума, инертной и окислительной сред.  [c.2]

Таким образом, обеспечение нормальных условий для протекания процесса испарения требует вакуума Рост Ю- Па, для формирования молекулярных пучков Рост 10 Па, для получения качественных пленок на подложке рост = Ю - Па.  [c.61]

С 1957 г. в Ленинградском оптико-механическом объединении (ЛОМО) проводятся опытные работы по созданию аппаратуры для высокотемпературной металлографии. В частности, на базе установки ИМАШ-5М была спроектирована и изготовлена установка типа УВТ-1 [3] для исследования процесса деформации металлов и сплавов при растяжении и нагреве от 20 до 1100° С в вакууме. Основное преимущество установки УВТ-1 заключалось в возможности обеспечения больших растягивающих усилий (до 3000 кгс).  [c.134]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]

Основное функциональное назначение любого антикоррозионно, го покрытия — обеспечение защиты материала конструкции от непосредственного контакта с агрессивной средой, от кавитационных, эрозионных и абразивных воздействий. Защитное покрытие может выполнять также и антиадгезионную роль, препятствуя налипанию или отложению компонентов среды на стенках аппаратов и трубопроводов. Химическое оборудование с полимерным покрытием выполняет различные функции, которые так или иначе влияют на выбор критерия отказа. Так, например, предельное состояние емкостной, колонной и реакционной аппаратуры с покрытием должно отличаться от предельного состояния насосов, вакуум-фильтров, центрифуг и т. д. Во многих случаях необходимо устанавливать предельные состояния для отдельных элементов и узлов аппаратов и машин форсунок, оросителей, мешалок, колес центробежных насосов п т. д. Такой подход позволяет более рационально выбирать тип и конструкцию полимерного покрытия.  [c.44]

Коррозионностойкие армированные пластики занимают ведущее положение как конструкционные химически стойкие материалы. Они работают в самом материалоемком интервале эксплуатационных условий от криогенных температур до 150 °С, от глубокого вакуума до давления 20 МПа, в широком диапазоне жидких и газовых агрессивных сред. В качестве связующих коррозионностойких стеклопластиков используют ненасыщенные полиэфирные, эпоксидные, фенольные и фурановые смолы. Для обеспечения длительной работоспособности в условиях воздействия агрессивных сред наибольшее применение получила многослойная структура. Она включает в себя  [c.97]

Один из практически важных вопросов, связанных с обеспечением минимального износа трущихся деталей, —оптимальный выбор сочетания материалов для них. К материалам деталей предъявляются также требования конструктивной прочности, жесткости и технологичности, поэтому задача оптимального сочетания материалов трущихся поверхностей часто решается путем нанесения на одну из деталей слоя иного материала (металлического или неметаллического), нри котором в наибольшей мере удовлетворяется требование антифрикционности данного сопряжения. Громадное влияние на трение и изнашивание в условиях несовершенной смазки оказывают свойства смазочных материалов, поэтому вопрос антифрикционности включает также учет взаимодействия трущихся материалов со смазкой. При отсутствии смазки трение и изнашивание зависят от свойств газовой среды и степени вакуума. Работы по изучению трения и изнашивания в связи с выбором материалов для трущихся деталей проводились в разных направлениях.  [c.51]

После очистки проводится обезжиривание бензином А72 или спиртом-ректификатом, после чего арматуру продувают горячим воздухом или азотом до тех пор, пока на выходе температура не достигнет значений выше 100° С. Для надежного обеспечения отсутствия влаги сушку дополняют отсосом воздуха с использованием насосов предварительного вакуума. Резкое повышение вакуума указывает на отсутствие влаги на внутренних поверхностях арматуры. Контроль гелиевыми течеискателями производится лицами, подготовленными для выполнения этих работ и прошедшими соответствующую теоретическую и практическую подготовку.  [c.204]


При проектировании транспортных роторов должны быть созданы системы и механизмы одинаковой пропускной способности, равной цикловой производительности, выбраны траектории и параметры законов движения деталей в интервале передачи, определены силовые характеристики захватных органов (пружин, вакуум-присосов, электромагнитов и т. п.), рассчитаны приводные механизмы для обеспечения синхронной передачи обрабатываемых деталей между соседними роторами. Линейная синхронизация соседних роторов по шагу выполняется с помощью мелкомодульных зубчатых муфт, устанавливаемых на главных валах каждого транспортного механизма.  [c.303]

Для обеспечения надежности в точном приборостроении и машиностроении часто используют сложные барьеры в виде герметически закрытых корпусов, заполненных нейтральным газом, или в корпусе, где размещено изделие, поддерживается глубокий вакуум.  [c.219]

Таким образом, главным обстоятельством, которое следует учитывать при проведении тепловых испытаний в вакуумных камерах с полным моделированием условий безграничного абсолютного вакуума, является обеспечение высокой степени черноты поверхности камеры. При невысокой температуре исследуемых изделий и отсутствии в рабочих условиях дополнительного излучения высокие требования к точности соблюдения тепловых режимов требуют охлаждения камеры сжиженными газами.  [c.519]

Особые требования к приспособлениям испытательных установок предъявляются при исследовании влияния различных газовых сред на свойства материалов. Как глубокий вакуум, так и высокой чистоты инертные газы обусловливают требования к обеспечению необходимой герметичности рабочих камер, возможно более полного исключения в рабочей камере элементов, которые могут быть источником загрязнения.  [c.159]

Рассмотрим аппаратуру для измерения рассеяния рентгеновского излучения. Естественно, что приборы, работающие в мягкой и ультрамягкой областях, оказываются существенно более сложными из-за необходимости обеспечения вакуума в приборе, чем в жесткой рентгеновской области. Несмотря на это, необходимость измерения во многих случаях характеристик рассеяния на рабочей длине волны зеркала привела к появлению установок, обеспечивающих возможность измерений при длинах волн до 11,3 нм [12, 26, 82]. На рис. 6.7 приведена схема прибора для измерения индикатрисы рассеяния [26]. Установки, как видно из рисунка, имеют большие линейные размеры для получения пучка с угловой расходимостью в десятки угловых секунд, что необходимо для исследования суперполированных поверхностей, имеющих параметр о до единиц ангстрем и большие корреляционные длины. Измерения проводятся на контрастной характеристической линии, выделяемой из спектра материала анода рентгеновской трубки 1. Щели 2 я 3 обеспечивают требуемую угловую расходимость падающего на образец пучка рентгеновского излучения. С помощью устройства перемещения 4 образец может быть выведен из рентгеновского пучка и тогда, перемещая детектор 6 с узкой щелью 8, записывается контур падающего пучка. Затем, вводя образец 5 и устанавливая его под заданным углом, детектором 6 с помощью механизма перемещения 7 производится запись индикатрисы рассеянного излучения. Подробное рассмотрение процедуры обработки экспериментальных индикатрис рассеяния для вычисления среднеквадратичной шероховатости и корреляционной длины  [c.239]

Основным условием для обеспечения надежной работы вакуумного деаэратора, кроме обеспечения вакуума в соответствии с температурой воды является высокая герметичность, обеспечивающая отсутствие подсосов, особенно-в водяной части. Трубопровод от колонки до деаэраторно-го бака должен быть цельносварным. Отдельную деаэрационную колонку необходимо размещать на высоте 11 — 12 м (но не менее 4—5 м) над деаэраторным баком, чтобы вода в нем, арматура и насосы находились под давлением. Это дает возможность избежать подсосов воздуха. Если невозможно размещение вакуумно-деаэраторнок колонки на такой высоте, необходимо более надежно обеспечить отсутствие подсосов воздуха в агрегате (водяное уплотнение сальников, задвижек, насосов и других приборов и аппаратов установки).  [c.209]

Разборные ртутные вентили с постоянной откачкой оборудуются спецнальной системой автоматического обеспечения вакуума (см. 9).  [c.135]

Актуальность обеспечения высокой эксплуатационной надежности технологического оборудования обуславливается как специфическими особенностями, так и современными тенденциями их развития. К числу отличительных черт нефтеперерабатывающих и нефтегазохимических производств следует отнести широкое применение в технологических процессах повышенных и криогенных температур высоких давлений и вакуума коррозионных, огне- и взрывоопасных сред токсичных веществ сложные режимы нагружения технологического оборудования, включающие различные виды и сочетания механических тепловых и коррозионных нагрузок. Для большинства видов оборудования, используемого в технологических процессах, указанные факторы действуют одновременно и приводят к труднопрогнозируемым результатам. В особо неблагоприятных ситуациях это может привести к значительному экономическому ущербу, нарушению нор-  [c.4]

Максимально допустимое значение вакуума обычно указывается в заводской кавитационной характеристике насоса. Эта величина зависит от конструктивных особенностей насоса, рода и температуры перекачиваемой жидкости. Для обеспечения нормальных условий работы насоса необходимо, чтобы расчетное значение вакуума было меньше или равно допустимому. (Метод расчета всасывающей линии порш1невого насоса здесь не рассматриваем. Благодаря неустановившемуся движению расчет при поршневом насосе отличается от расчета при центробежном насосе. В поршневом насосе на всасывание, кроме элементов всасывающего трубопровода, оказывают влияние число двойных ходов поршня и инерция всей массы жидкости во всасывающем трубопроводе.)  [c.126]

Обеспечение удовлетворительных условий процесса нанесения покрытий успешно достигается методами физического осаждения в вакууме. Наиболее отработаны для производственных процессов ионновакуумные технологии нанесения покрытий из плазмы электрического разряда с холодным катодом, основанные на методе конденсации ве-п(ества в вакууме с ионной бомбардировкой,  [c.248]

В обоих случаях затрудняется образование окисных пленок и возникает контакт ювенильных поверхностей, что приводит к образованию адгезионных связей и интенсивному схватыванию. Интенсифицируются процессы упрочнения и разупрочнения материала, фазовые переходы, а для неметаллических материалов в вакууме может происходить испарение отдельных составляющих. Интервал условий (давления, температуры), в которых происходит резкое изменение свойств пары трения, для различных материалов изменяется в достаточно широком диапазоне. Работоспособность сопряжений в этих условиях может быть обеспечена при применении специальных Твердых смазочных покрытий Эффективность этих покрытий зависит от выбора состава суспензии, способа ее нанесения, от материала подложки и обработки ее поверхности. В качестве критерия для оценки работоспособности твердых смазок при их испытании принимают обычно время работы покрытия до резкого необратимрго повышения коэффициента трения. Толщина покрытия на стадии проектирований определяется из условия обеспечения необходимого зазОрй в со-  [c.253]


Исходньши компонентами покрытия служили электролитический никель, кристаллический кремний, аморфный бор, активированный уголь. Для введения хрома использовали чистый хром, нихром и карбид хрома. Элементный состав во всех случаях сохраняли постоянным. Покрытие наносили на образцы из нержавеющей стали 1Х18Н9Т. Дисперсионной средой в шликере служил спиртово-водный раствор 1 1. Для обеспечения седиментационной устойчивости суспензии вводили 2 мае. % бентонита. Покрытие формировали в вакууме при температуре 1100 °С. Для исследования структуры покрытия из образцов готовили полированные шлифы.  [c.114]

Для того чтобы протекал нормально и процесс напыления материала на лодложку, необходимо, чтобы испарившиеся молекулы образовывали мо-лекулярные пучки, практически прямолинейно распространяющиеся от испарителя к подложке. Это требует обеспечения такого вакуума, при котором длина свободного пробега молекул остаточной среды и испаряющегося вещества X в несколько раз превышает пролетное расстояние L между испарителем и подложкой. При L = 40 см это достигается при Рост i Па. При  [c.60]

I — провод к емкостному детектору 2 — датчик уровнемера жидкого азота 3 — жидкий азот 4 — пенопласт 5 — трубка для заполнения сосуда Дьюара жидким гелием —отверстие для проводов от термопар и диода из арсенида галлия 7 —сильфон S —восемь клемм S — кольцевое уплотнение /О — герметизация эпоксидным клеем // — механизм подъема и опускания /2 —отверстие для проводов от нагревателя /3 —трубки для вакуума или гелкн /4 — подача жидкого азота /5 — предусилитель /5 — сосуд Дьюара с. жидким азотом /7 —жидкий гелий /в —датчик уровня жидкого гелия /Э —тепловые экраны 20 —гофр для обеспечения теилового контакта 2/ — испытательный узел  [c.379]


Смотреть страницы где упоминается термин Обеспечение вакуума : [c.339]    [c.108]    [c.125]    [c.36]    [c.219]    [c.294]    [c.285]    [c.169]    [c.37]    [c.241]   
Смотреть главы в:

Теплообменные аппараты и конденсацонные усиройсва турбоустановок  -> Обеспечение вакуума



ПОИСК



Вакуум



© 2025 Mash-xxl.info Реклама на сайте