Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концентрация напряжений и деформаций в деталях машин

КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ В ДЕТАЛЯХ МАШИН  [c.1]

Концентрация напряжений и деформаций в деталях машин. — М. Машиностроение, 1981.— 224 с., ил.  [c.2]

В третьей части (гл. 7—10) с использованием численных методов теории упругости, пластичности и ползучести дан уточненный расчет концентрации напряжений и деформаций в деталях машин. Рассмотрены нелинейные задачи концентрации напряжений и деформаций.  [c.4]


Вместе с тем успехи двух последних десятилетий в механике разрушения, как в научной основе живучести деталей машин и элементов конструкций, позволили перейти к анализу прочности, ресурса и надежности с учетом макродефектов типа трещин. Трещины в деталях создают предельно высокую концентрацию местных напряжений и деформаций, затрудняя анализ прочности, ресурса и надежности по критериям типа  [c.83]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]

Все внезапные разрушения деталей машин, в которых образовались трещины усталости, являются в основном хрупкими разрушениями, так как развившаяся трещина вызывает значительную концентрацию напряжений, и в ослабленном сечении действуют повышенные номинальные напряжения. В некоторых случаях поверхность излома обнаруживает отчетливые следы изменения скорости распространения трещины или временного прекращения развития трещины в связи с изменением площади поперечного сечения, характера нагружения и запаса энергии упругой деформации в детали. Встречаются также изломы сме-п]анного типа, на которых ясно обнаруживается переход от хрупкого излома к вязкому или, наоборот, от вязкого излома к хрупкому. В зависимости от скорости распространения трещины поверхность излома может быть непрерывной или расчлененной.  [c.26]


Надежность деталей машин в практических условиях эксплуатации во многом определяется малой чувствительностью стали к концентрации напряжений и к увел(ичению скорости деформации. Эти свойства стали характеризует температура перехода ее в хладноломкое состояние. Чем ниже температура перехода стали в хладноломкое состояние, тем менее чув ствительна она к концентрации напряжений и к увеличению скорости деформации (ударам).  [c.118]

Монография содержит оригинальный материал по исследованию деталей машин при сложном напряженном состоянии. Приведены результаты теоретических и экспериментальных исследований срезающего сдвига, возникающего в зонах концентрации напряжений. Рассмотрены критерии прочности и показано их применение для зон концентрации напряжений при упругих и пластических деформациях.  [c.135]

Когда детали машин подвержены таким видам деформации, как изгиб или кручение, вопрос о концентрации напряжений имеет первостепенное значение. Многочисленные теоретические и экспериментальные исследования показали, что форма изгибаемых или скручиваемых деталей оказывает большое влияние на распределение в ней напряжений.  [c.193]

Иногда высказывается мнение о том, что неравномерность распределения напряжений в местах их концентрации при ползучести сглаживается и что при расчетах на ползучесть можно поэтому концентрацию напряжений не учитывать. Следует заметить, что детали машин, работающие при высоких температурах, как правило, изготовляются из специальных жаропрочных сталей, обладающих сравнительно малой ползучестью разрушение деталей из таких сталей наступает обычно Брн небольших деформациях и носит хрупкий характер. Поэтому в большинстве практически встречающихся случаев выравнивание местных напряжений не успевает произойти и, таким образом, при расчетах на ползучесть концентрацию напряжений необходимо принимать во внимание.  [c.581]

Если напряжение в конструкции достигнет предела прочности, то произойдет ее разрушение. Например, если внутреннее давление вызовет в трубе напряжение, равное пределу прочности, то труба разорвется. Чтобы металл работал надежно в теплотехнических конструкциях и деталях, кроме определенной прочности, он должен иметь определенный запас пластичности. Детали машин и элементы стальных конструкций имеют сложную форму. Напряжения в них распределяются неравномерно. В местах резких переходов от толстых сечений к тонким, около выточек, галтелей, около буртиков (усилений) и подкладных колец сварных швов, получается концентрация напряжения. Местные напряжения могут быть в несколько раз выше средних. Для пластичного материала это не очень опасно. За счет весьма малых пластических деформаций произойдет перераспределение и выравнивание напряжений без искажения размеров всей детали или элемента конструкции. Если же металл хрупок, то в местах концентрации напряжений могут образоваться трещины. В конечном счете эти трещины могут привести к разрушению всей детали или конструкции.  [c.66]

Очевидно, что в образцах или деталях машин с остроконечными вырезами даже при не очень больших нагрузках в вершинах вырезов могут возникать локальные напряжения, превышающие предел текучести материала. Локальная текучесть приводит к перераспределению напряжений, и теоретический коэффициент концентрации упругих напряжений уже нельзя использовать для точного определения отношения действующих напряжений к номинальным, поскольку отношение максимального действующего напряжения к номинальному меньше, чем в том случае, если бы материал оставался упругим. Это означает, что величина коэффициента концентрации напряжений вследствие пластического течения уменьшается, в то время как локальная деформация увеличивается по сравнению с величиной, предсказываемой по теории упругости.  [c.410]

Разрушение деталей машин от напряжений, переменных во времени (см. рис. 3 и 4) может происходить при напряжениях, значительно меньших предела прочности Ов, и часто меньших предела текучести ат, если эти изменения напряжений повторяются достаточно большое число раз. Это объясняется появлением микроскопических трещин в местах концентрации напряжений или в зоне нарушения однородности структуры материала (раковин, шлаковых включений и т. д.), которые, постепенно увеличиваясь, сокращают рабочее сечение детали. Развитие этих трещин в результате циклических напряжений приводит в конце концов к разрушению детали обычно без проявлений пластической деформации. Такой вид разрушений ма-  [c.27]


Теория пластичности малых деформаций охватывает обширный круг вопросов, связанных с изучением напряженно-деформированного состояния деталей машин и строительных конструкций, материал которых в зонах концентрации напряжений частично или полностью переходит за предел текучести и при этом претерпевает деформационное упрочнение. На принципах статической теории малых пластических деформаций построены классические решения ряда задач прикладного характера, предложенные нашими советскими учеными (Н. Ф. Дроздов, Н. И. Безухов, [3], А. А. Ильюшин [20 ] и многие другие. К ним относятся решения задач по равновесию толстостенной цилиндрической трубы под действием внутреннего и внешнего давления и осевых сил по равновесию стержней под действием осевых сил и закручивающих пар по равновесию полого шара под действием внутреннего и внешнего давлений и пр.  [c.19]

Методы восстановления работоспособности деталей. В процессе работы машины детали изнашиваются в зоне контакта рабочих поверхностей, при этом изменяются геометрические размеры деталей — увеличиваются зазоры в соединении и из.меняется качественное состояние рабочих поверхностей. В несущих конструкциях при закономерных нагрузках в местах концентрации напряжений могут образоваться усталостные трещины и деформации, что нарушает прочность конструкции, т. е. ее работоспособность. Для восстановления ра-  [c.111]

Теория контактных задач находит широкое применение в машиностроении. Известно, что передача усилий в машинах сопровождается контактированием деталей. Последние в большинстве случаев можно рассматривать как упругие тела. Методы, развиваемые в теории контактных задач, позволяют найти распределение давлений в местах контакта. Это дает возможность ответить на важный вопрос о местах концентрации напряжений. За последнее время разрабатываются вопросы контактной жесткости, когда необходимо принимать во внимание деформацию неровностей, находящихся па поверхности упругого тела. Появление конструктивных материалов, в состав которых входят полимеры, сделало весьма актуальными контактные задачи для вязкоупругих тел. Это позволяет также получить результаты для такой важной для техники проблемы, как трение качения. Определение напряжений, возникающих под основаниями и фундаментами, в том числе и тогда, когда происходит консолидация грунта, приводит также к контактным задачам.  [c.3]

Предварительное нагружение до появления упругопластических деформаций н последующая разгрузка увеличивают упругий диапазон нагружения деталей и снижают коэффициент концентрации напряжений. Этот эффект лежит в основе одного из способов упрочнения деталей машин (например, предварительное растяжение болтов).  [c.521]

В 1981 г. увидела свет монография Г. Б. Иосилевича Концентрация напряжений и деформаций в деталях машин , в 1988 г. издан его замечательный учебник для вузов Детали машин .  [c.4]

Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]

Старение деталей машин, их несущая способность и прочность при переменной нагруженности зависят от концентрации напряжений, абсолютных размеров, свойств материалов и качества поверхностного слоя деталей, окружающей среды п других факторов. Металлографические, рентгеновские и исследования, выполненные с помощью электронных микроскопов, позволили открыть ряд новых явлений, сопровождающих повторную деформацию и последующее (часто внезонное) разрушение материалов под действием повторных нагрузок. Это явление называется пределом выносливости металлов. Субми-кроскопические трещины усталости образуются на ранней стадии деформирования, после числа циклов, составляющего 10—20% общей долговечности. Видимая трещина образуется незадолго до окончательного разрушения детали. С помощью методов дефектоскопии в ряде случаев можно контролировать величину и скорость распространения трещин в деталях машин и определять пределы безотказной работы при медленно развивающихся трещинах усталости.  [c.223]


Применение новых методов расчетов и соответствующих методов испытания и изготовления, применение новых материалов и дифференцирование их свойств даже применительно к расчету различных частей одной и той же детали, повышение их физикомеханических свойств и переход от универсальных материалов к комбинированным резко изменили весовой профиль машин, что нашло свое выражение в максимальной концентрации мощности и производительности в единице веса. Поведение материала не является постоянным оно всегда изменяется и определяется конструктивными решениями и условиями эксплуатации. КрО ме того, при выборе материала необходимо учитывать, что материал обладает способностью смягчать напряженное состояние при перегрузках за счет пластической деформации. Традиционные методы расчета деталей машин на прочность исходят из определения налря-жения  [c.4]

Детали машин в большинстве случаев имеют сложную форму с резкими изменениями сечений в виде буртов, галтелей, надрезов, отверстий и т. п. Все это вызывает в отдельных частях деталей концентрацию напряжений и является источником возникновения сложного напряженного состояния. Наиболее правильная оценка свойств материалов может быть дана при условии приближения методов испытания к практическим условиям работы. Проведение таких испытаний иногда методически трудно осуш,ествимо и часто связано с большими дополнительными затратами. В связи с этим представляют интерес методы создания в образце сложного напряженного состояния при обычных испытаниях на растяжение. Одним из таких методов является нанесение на цилиндрический образец кольцевого надреза. Изучение характера разрушения материала и процесса распространения пластической деформации в месте надреза может содействовать выяснению общих закономерностей пластической деформации при сложном напряженном состоянии.  [c.117]

Обсуждение статической неопределимости закона распределения напряжений по поперечному сечению стержня показало, что при наличии в стержне отверстий, выточек и тому подобных нерегулярностей формы возникает резкая неравномерность распределения напряжений со значительными пиками вблизи указанных нерегулярностей. Это явление носит па. атптконцгнтрации напряжений. Оно обнаруживается не только при осевой, но и при всех других видах деформации стержня, а-также при деформации элементов любой формы (не только стержневых). С этим явлением приходится считаться как при конструировании элементов конструкций и деталей машин, так и при расчете их. Выявить распределение напряжений с учетом их концентрации можно двумя путями теоретическим и экспериментальным. Теоретический путь основан на применении теории сплошных сред (теории упругости, теории пластичности, теории ползучести — в зависимости от свойств материала), в которой вместо гипотез геометрического характера используются дифференциальные уравнения совместности деформаций, а равновесие соблюдается для любого бесконечного малого элемента тела, а не в интегральном (по поперечному сечению) смысле, как это делается в сопротивлении материалов.  [c.99]

Рассмотрим сначала особенности напряженного состояния и концентрации напряжений около отверстий. Такой концентратор, имеюпщй конструктикное или технологическое назначение, встречается во многих деталях машин (пластинах, стержнях, оболочках, дисках и т. п.). Вопросам расчета концентрации напряжений около отверстий посвящено большое число работ. Однако наиболее полно эта задача решена в упругой постановке, менее детально — в упруго-пластической области и к условиях ползучести. Поэтому основное внимание уделим концентрации напряжений в пластинах с отверстиями при упруго-пластических деформациях и деформациях ползучести при простом и сло кном нагружениях. Упругие решения приведем лишь для сравнения.  [c.85]

С другой стороны известно, что хрупкое разрушение деталей машин определяется не только пониженным сопротивлением отрыву, но и пониженной способностью металла к местной пластической деформации и к перераспределению напряжений в местах их концентрации за счет местной пластической деформации. Эта последняя особенность, по С. Т. Кишкину, придается и устраняется методами обработки металла, отличными от методов повышения сопротивления отрыву, и должна учитываться в методике проверки качества металла. В исследованиях С. Т. Кишкина и др., например, сопротивление отрыву принято [110] определять по А. Ф. Иоффе (при низких температурах) или изгибом круглого диска, опертого по контуру, в то время как способность материала перераспределять напряжения оценивается путем испытания надрезанного образца на растяжение с перекосом или путем испытания надрезанного образца на изгиб.  [c.100]


Смотреть страницы где упоминается термин Концентрация напряжений и деформаций в деталях машин : [c.254]    [c.40]    [c.71]    [c.273]    [c.113]   
Смотреть главы в:

Расчет на прочность деталей машин Издание 3  -> Концентрация напряжений и деформаций в деталях машин



ПОИСК



597 — Деформации и напряжения

Детали машин напряжений

Деформации деталей машин

Деформация детали

Концентрация деформаций

Концентрация напряжений

Напряжения Концентрация — си. Концентрация напряжений



© 2025 Mash-xxl.info Реклама на сайте