Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытание на прочность при растяжении

ИСПЫТАНИЕ НА ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ  [c.437]

Ткань и трикотаж при испытании на прочность при растяжении разрывают в двух направлениях по длине и по ширине.  [c.440]

Машины, применяемые для испытания на прочность при растяжении волокон, одиночных нитей, пряжи, ткани и т. д., не отличаются в значительной степени по своей конструкции от машин, служащих для статических испытаний металлов. Машины, рассчитанные на предельные нагрузки от 50 гс (0,49 н) до 500 кгс (4,9 кн), имеют механический, гидравлический или, в редких случаях, пневматический привод. У некоторых машин для разрыва волокна активный захват опускается под действием силы тяжести, при этом скорость его опускания, а следовательно, и скорость растяжения волокна регулируется масляным или воздушным тормозным устройством.  [c.442]


Испытания на прочность при растяжении напыленного материала  [c.78]

Испытания на прочность при растяжении напыленного материала дают показатели прочности на разрыв, близкие к показателям для однородных литых материалов, если металлизация производилась при благоприятных условиях распыления. Однако такую высокую прочность можно получить лишь в том случае, если направление-  [c.78]

Фиг. 556. Форма образцов для испытания на прочность при растяжении металлизационного покрытия (для сравнительных исследований) предложена автором (указанная форма образцов применяется при исследованиях в ГДР) Фиг. 556. Форма образцов для испытания на прочность при растяжении <a href="/info/183747">металлизационного покрытия</a> (для сравнительных исследований) предложена автором (указанная форма образцов применяется при исследованиях в ГДР)
Большую часть металлов подвергают испытанию на прочность при растяжении, которое выполняют с помощью разрывных машин. Стандартный образец I металла (рис. 10, о) закрепляют в захватах 2 машины. При включении машины захваты расходятся в противоположные стороны, а образец постепенно растягивается до разрушения. О величине разрушающего усилия судят по  [c.25]

Испытания на прочность при растяжении плоских образцов, имеющих различное начальное напряженное состояние, созданное как процессом сварки, так и применением специальных мер по снятию сварочных напряжений (отжиг, проковка швов, предварительное растяжение), показывают, что прочность таких образцов одинакова и не зависит от начальных напряжений. Характерно, что во всех случаях разрушение сопровождалось значительными пластическими деформациями. Это в одинаковой мере было отмечено при испытаниях образцов как из малоуглеродистой, так и из низколегированной стали (Ст. 3 СКС 20Г). Подобные результаты были получены и при разрушении трубчатых образцов внутренним давлением (фиг. 50). В этом случае, как известно, напряженное состояние является более сложным. Таким образом, можно утверждать, что в случае приме-  [c.96]

Прочностью называется способность материалов не разрушаться под действием внешних усилий (нагрузок). Нагрузки могут быть растягивающими, сжимающими, изгибающими и др. Большую часть материалов подвергают испытанию на прочность при растяжении. Для этого служат разрывные машины, которые при включении постепенно растягивают образец до его разрыва. Величину нагрузки, приложенной к образцу в момент разрыва, деленную на первоначальную площадь сечения образца, называют пределом прочности.  [c.26]


Большая часть металлов подвергается испытанию на прочность при растяжении. Для этого служат разрывные машины. Стандартный образец 1 металла (рис. 8, в) закрепляется в захватах 2 машины. При включении машины захваты расходятся в разные стороны, а образец постепенно растягивается. Чем больше растягивающее усилие, тем больше удлиняется образец. О величине усилия судят по стрелке прибора, установленного на машине. Может наступить момент, когда образец не выдержит приложенного к нему усилия и разорвется. Для разных металлов такой момент наступает при разных усилиях (нагрузках).  [c.22]

Напряжения в поперечном направлении оказывают значительное влияние на вид кривых деформации композиционного материала. В некоторых металлических композиционных материалах, армированных вольфрамовой или молибденовой проволокой, последняя имеет большие деформации до разрушения, чем при испытаниях вне композиционного материала [175, 190]. При этом на проволоках, находящихся в матрице, образуется несколько шеек. Было высказано предположение, что возникающие в композиционном материале радиальные напряжения растяжения препятствуют образованию шейки и обусловливают более равномерное и большее по величине удлинение проволоки, а также всей композиции в целом. Напряжения в поперечном направлении несущественно влияют на прочность при растяжении в осевом направлении их эффект значителен при испытаниях в поперечном направлении.  [c.61]

На фиг, 56, а приведена форма образцов для испытания металлизационных слоев на- прочность при растяжении, применяемая  [c.82]

Фиг. 56, а. Форма образцов для испытания металлизационных слоев на прочность при растяжении в настоящее время применяются в ГДР  [c.83]

При испытании эскалаторных лент на прочность при растяжении используют зажимы, форма которых отвечает конфигурации ленты. Гусеничные ленты из капроновой ткани Целина на прочность не проверяют, их предел прочности не менее 50 кН (5000 кгс) гарантируется. Удлинение образцов этих лент определяют при заданной промежуточной нагрузке.  [c.103]

Общего точного метода перевода чисел твердости по Бринелю на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеется надежная основа для перевода.  [c.84]

К статическим относятся испытания на прочность и растяжение, а также на прочность связи между элементами конструкции. При динамических испытаниях определяют стойкость к многократному изгибу (с передачей мощности и без нее) и тяговую способность.  [c.117]

Часто технология прессования и намотки такова, что создаваемое межслойное контактное давление оказывается недостаточным для устранения в композите технологических нарушений монолитности структуры — пор и пустот, т. е. мест, где отсутствует сцепление между волокнами и матрицей. Такие несовершенства структуры композита, мало влияя на прочность при растяжении в направлении волокон, могут значительно сказаться на прочности и жесткости при сжатии, межслойном сдвиге и поперечном отрыве. Типичные данные, полученные [32, 33 ] при испытаниях стеклотекстолитов, показаны на рис. 1.3.8. Особенно характерны данные о прочности при сжатии и межслойном сдвиге. Прочность резко снижалась уже при сравнительно небольшой пористости увеличение же пористости  [c.43]

Для кратковременных испытаний на прочность применяют обычные машины, как и для статических испытаний при комнатных температурах, но снабженные нагревательными устройствами. Общий вид конструкции машины ИМ-4Р для кратковременного испытания образцов на растяжение при высоких температурах показан на рис. 51, а.  [c.105]

Результаты испытаний на растяжение и сжатие чугуна значительно отличаются друг от друга предел прочности при растяжении в  [c.195]

Основная информация о длительной прочности материала получается в результате испытания на длительную прочность при растяжении. Образец нагружается растягивающей силой,  [c.672]

В первых работах Бриджмена была установлена слабая зависимость предела прочности под действием гидростатического давления предел прочности возрастает линейно на 10 МПа при увеличении давления на 150 МПа. Однако дальнейшие уточнения и совершенствование методики испытаний при высоких гидростатических давлениях привели к выводу, что давление до 2500 МПа не оказывает влияния на предел прочности при растяжении.  [c.439]


Материалы, армированные только нитевидными кристаллами, обладают также высокими прочностными свойствами. Как следует из табл. 7.1, введение в матрицу даже сравнительно небольшого объема нитевидных кристаллов повышает ее прочностные характеристики в плоскости их укладки в несколько раз, причем прочность при растяжении и межслойном сдвиге линейно зависит от объемного содержания нитевидных кристаллов (рис. 7.4). Разброс значении прочности при растяжении и сдвиге не превышал 10 % (число испытанных образцов на каждую точку — не менее восьми).  [c.207]

Рассматриваемое разрушение лопаток является смешанным. Даже на начальном этапе развития трещины по границам зерен на нее оказывает влияние вибрационная нагрузка от набегающего газового потока. Особое значение имеет тот факт, что лопатка в этом потоке подвергается скручиванию, создающему сдвиговые напряжения. Они способствуют облегченному разрушению по границам зерен и более быстрому зарождению трещин при всех механизмах разрушения по сравнению с растяжением (изгибом) при одноосном напряженном состоянии материала. Поэтому данные по испытаниям материала на длительную прочность при растяжении не в полной мере отражают реальную долговечность материала при возникновении в нем начальных межзеренных трещин.  [c.627]

Испытания на длительную прочность композитов с металлической матрицей, армированной волокнами бора, очень ограничены. В работе [66] осуществлены некоторые эксперименты на ползучесть и длительную прочность при растяжении композитов, изготовленных из алюминия 6061, армированного волокнами бора,  [c.305]

Испытания на прочность при растяжении сырого крезольного текстолита на миткалевой основе и того же текстолита, но подвергнутого термообработке при 150° С в течение  [c.305]

В Институте проблем прочности АН УССР [10] разработаны магнитострикционные установки для испытаний на усталость при растяжении-сжатии с различной частотой колебаний У-3 с частотой  [c.199]

Другой подход к проблеме растворимости был использован Брентналлом и др. [7] при исследовании системы ниобий — вольфрам. Максимальное количество вольфрама, которое может быть введено в обычные ниобиевые сплавы, ограничено 20—30% из-за снижения ковкости сплава. Композитный материал из ниобиевой матрицы с вольфрамовой проволокой теряет стабильность вследствие растворения проволоки. Однако продукты растворения представляют собой высокопрочные сплавы системы Nb — W, которые обычно являются нековкими. Образование этих сплавов компенсирует потерю прочности, вызванную растворением вольфрамовой проволоки. На рис. 4 показано влияние выдержки (до 100 ч) при 1477 К на прочность при растяжении Nb-сплава с 24 об.% проволоки (W с добавкой 37о Re). Имеются два фактора, снижающие прочность. Первый из них — это уменьшение сечения вольфрамовой проволоки из-за растворения, второй— возврат, приводящий к разупрочнению. Прочность проволоки уменьшается с 119 кГ/мм в исходном состоянии до 77 кГ/мм после выдержки 100 ч при 1477 К. В то же время прочность композита не изменяется. Предполагается, что постоянная величина прочности композита обеспечивается образованием высокопрочных Nb — W-спла-вов. На рис. 5 сопоставлены микроструктуры вблизи места разрушения при испытании на растяжение образцов в исходном состоянии и после ЮО-часовой выдержки при 1477 К. Матрица становится менее пластичной после отжига из-за большого количества растворившегося в ней вольфрама.  [c.94]

Наряду с функциональной автономностью температурная камера конструктивно связана с испытательной машиной или прибором. Учитывая это, камеры группируют в зависимости от вида испытаний к разрывным и универсальным машинам к машинам для испытаний на ползучесть, длительную прочность, релаксацию к машинам для испытаний на усталость при растяжении, сжатии или знакопеременных циклах растяжения-сжатня к машинам для испытаний на усталость при изгибе (чистом, консольном, вращающихся образцов) к машинам для испытаний на ударную прочность.  [c.278]

За последние 20—30 лет накоплено много наблюдений, относящихся к длительным испытаниям на растяжение при ползу чести и на длительную прочность. В этих опытах (1) растянутые образцы поддерживались при постоянных значениях нагрузки и температуры в течение нескольких недель и месяцев, и строились соответствующие кривые ползучести в зависимости от времени t, е"=/(0- Наряду с такими стандартными испытаниями на длительную ползучесть проводились также (2) испытания растянутых образцов при постоянной скорости удлинения и (3) испытания на релаксацию, в которых определялось убывание нагрузки с течением времени / при условиях, когда полное относительное удлинение при растяжении (равное сумме упругой деформации е и остаточной деформации или деформации ползучести е") поддерживалось постоянным, т. е. е = е + 4-е"=(т/ + е" = соп81. Во всех перечисленных типах стандартных испытаний температура 0 поддерживалась постоянной. Кроме того, проводились (4) испытания на ползучесть при растяжении при постоянном напряжении а, но при медленных колебаниях температуры 0 между некоторыми верхним и нижним пределами (5) испытания при сложном (двухосном) напряжен-  [c.620]

Чтобы моделировать эти условия, в покрытий искусственно создают дефекты, просверливая в них отверстия небольшого диаметра или нанося стандартные отпечатки измерения твердости. Затем образец испытывают на жароупорность, причем определяют самозалечивающие и защитные свойства покрытия, оставшегося целым [14, 15]. Искусственно поврежденные образцы применяют также при других испытаниях, например на прочность при растяжении [161.  [c.233]

При испытании хрупких материа.тов (например, чугунных образцов) установлено, что они способны выдерживать гораздо большие нагрузки при сжатии, чем при растяжении. Вид диаграм.м при испытании чугунных образцов показан на рис. 2.24. Сплошной линией изображена зависимость между о и е при растяжении, штриховой линией — при сжатии. По этим диаграммам определяют пределы прочности при растяжении (Оцр) и при сжатии (Овс)-Для хрупких материалов  [c.169]


Определение прочности при растяжении. Прочность — способность материала сопротивляться разрушению под действием внешних сил, постоянных (статическая прочность) и переменных (сопротивление усталости). При статических испытаниях образец (рис. 10.14, а) со стандартными размерами деформируют плавно возрастающей нагрузкой. При испытании измеряют прилагаемую силу F и соответствующее удлинение Д/ образца. По измерениям строят диаграмму растяжения (рис. 10.14,6), которая имеет ряд характерных точек. Если разделить нагрузки, соответствующие характерны.м точкам диаграммы, на площадь поперечного сечения образца до растяжения, то можно определить следующие характеристики прочности предел пропорциональности a =FJAf  [c.128]

Крепление образца в захватах. Создание на основе высокопрочных армирующих волокон полимерных композиционных материалов порождает значительные трудности получения стабильных значений предела прочности при растяжении этих материалов 39]. Особенно они проявляются при испытании трехмерноармнрованных материалов, изготовленных на основе углеродных волокон. Опытные данные и характер разрушения образцов свидетельствуют о том, что сложность получения стабильных и воспроизводимых характеристик прочности при растяжении композиционных материалов обусловливается главным образом необ.ходимостью надежного крепления образца в захватах испытательной машины (для исключения проскальзывания), а также влиянием формы и размеров образца. Учет этих факторов особенно необходим при испытании высокопрочных композиционных материалов. Проскальзывание образца в захватах приводит к появлению па его поверхности царапни, сколов и вмятин. Повторное нагружение образца после проскальзывания часто усугубляет эти дефекты н способствует разрушению образца в местах повреждения 23, 74]. Во избежание указанного явления используют различные дополнительные приспособления или устройства, которые усложняют  [c.26]

В отличие от гладкой поверхности раздела образца, отожженного в течение 0,5 ч, поверхность образца, отожженного перед испытанием в течение 150 ч, сильно изрыта и нерегулярна из-за взаимодействия волокна с матр Ицей (рис. 6). Диборид алюминия, образующийся на стороне поверхности раздела, обращенной к борному волокну, остается на волокнах, а AIB2, образующийся на стороне, обращенной к алюминию, частично разрушается и вклинивается в матрицу. Продукт взаимодействия на волокнах у поверхности раздела имеет грубую гранулярную структуру, наследуя очень нерегулярную поверхность волокна. В результате этого возникает много дефектов поверхности, которые, возможно, являются концентраторами напряжений и, конечно, могут способствовать уменьшению прочности при растяжении волокон и композита в целом. Один из таких дефектов указан на ри с. 6 стрелкой.  [c.150]

КОН бора проводились на воздухе они отчетливо выявили заметное снижение прочности при температуре ниже 811 К [37, 38]. С обнаружением интенсивной реакции между волокнами бора и расплавленной окисью бора (температура плавления 727 К) стало ясно, что одна из возможных причин разупрочнения — поверхностная реакция с воздухом. Последующие исследования проводились в атмосфере аргона, но предпринятые для исключения влияния кислорода меры были, как правило, недостаточны [И]. Напротив, если волокнО бора находится в титановой матрице, доступ кислорода к нему практически исключен это обстоятельство позволяет ответить на вопрос, применимы ли многие из этих характеристик прочности изолированных волокон к волокнам в составе композита. Роуз [28] начал в лаборатории автора работу по измерению прочности волокон бора при растяжении и сдвиге в высоком вакууме (<1,3-10- Па). Затем в статье Меткалфа и Шмитца [20] были приведены кривые температурной зависимости модуля и прочности при растяжении они представлены на рис. 13. Значения прочности были получены при кратковременном испытании с предварительной пятиминутной выдержкой при температуре испытания. Слабое увеличение прочности при повышении температуры от комнатной до 811 К объясняли тем, что приблизительно при этой температуре происходит переход от вязкого разрушения к хрупкому. С такой интерпретацией согласуются наблюдения Роуза о том, что пластическая деформация предшест-  [c.163]

Крайдер и Марчиано [48], исследуя прочность композитов алюминий — борсик при растяжении и сжатии, установили, что она заметно зависит от вида нагружения. В случае объемной доли упрочнителя 50% пределы прочности при растяжении и сжатии составляли соответственно 112 и 208 кГ/мм [48]. Сжимающая нагрузка воспринимается волокнами упрочнителя непосредственно, а растягивающая передается через поверхность раздела путем сдвига. Вследствие этого разрушение композита при одноосном сжатии представляет собой один из типов разрушения при испытании на выгибание.  [c.250]

К косвенным методам определения адгезионной прочности на поверхности раздела относятся испытания материала на прочность при межслойном сдвиге и растяжении в поперечном направлении. Данные о прочности композитов при межслойном сдвиге-приведены в работах [ЙО, 27]. Установлено, что микроструктура волокна с учетом его модуля упругости и метода обработки поверхности влияет на межслойную сдвиговую прочность материалЭ и, следовательно, на адгезионную прочность. Зависимость прочности композита при межслойном сдвиге от модуля упругости необработанного волокна изучена Гоаном и Прозеном 27].  [c.57]

В табл. 1 даны свойства некоторых материалов, представляющих наибольший интерес для самолетостроения (для композиционных материалов приведены показатели, полученные при испытаниях одноосноармированных образцов в направлении выкладки наполнителя). Значения предела прочности при растяжении и модуля упругости композиционных материалов приблизительно в 3 раза выше, чем у лучших алюминиевых сплавов. Делением указанных значений на плотность материала получают истинную меру его эффективности массы — показатели удельной прочности и удельного модуля упругости. По данным таблицы, композицион-  [c.40]

На рис. 16, а [14] показаны значения прочности и модуля упругости слоистого композиционного материала бор — алюминий различных схем армирования. Для сравнения на том же графике приведены соответствующие характеристики алюминиевого сплава 2219. Как видно, в любой точке композиционный материал по свойствам превосходит традиционный сплав. Прочность при растяжении и модуль упругости одноосноармированного слоистого материала, определенные при испытаниях в осевом (продольном) и трансверсальном (поперечном) направлениях, представлены точками А VI В соответственно. Точками С VI О представлены свойства композиционного материала со схемами армирования 0° (50), 45° (50), 90° (0) и 0° (25), 45° (50), 90° (25) соответственно (в скобках приведено количество слоев в %, имеющих указанную ориентацию). Композициоивык материал последней из приведен-  [c.59]


Смотреть страницы где упоминается термин Испытание на прочность при растяжении : [c.92]    [c.81]    [c.112]    [c.38]    [c.196]    [c.125]    [c.70]    [c.186]   
Смотреть главы в:

Техника определения механических свойств материалов Издание 4  -> Испытание на прочность при растяжении



ПОИСК



Длительные испытания на растяжение (ползучесть, релаксация, длительная прочность)

Испытания на прочность при растяжении напыленного материала

Машины и приборы для испытаний на твердость, прочность, растяжение и сжатие, эластич

Пластические массы органического происхождения. Методы испытаний. Определение предела прочности при растяжении



© 2025 Mash-xxl.info Реклама на сайте