Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Развитие ламинарного движения жидкости

При развитом ламинарном движении жидкости скорость в нормальном сечении потока изменяется плавно от нулевых значений у твердых стенок до максимальных на оси потока. Нулевое значение скорости объясняется прилипанием жидкости на твердых границах. Характерным признаком развитого ламинарного движения является слоистая структура потока. Скорость слоев, равноудаленных от оси потока, одинакова. Частицы жидкости, движущиеся в трубе круглого сечения с одинаковой скоростью, образуют слои в форме цилиндрической поверхности. Слои, жидкости, движущиеся быстрее, увлекают за собой слои, движущиеся медленнее. Смещение слоев относительно друг друга вызывает между ними касательные усилия, т.е. силы вязкости. При ламинарном движении касательные напряжения при сдвиге слоев возникают в результате поперечного молекулярного переноса количества движения, т.е. носителями количества движения между слоями являются молекулы.  [c.36]


РАЗВИТИЕ ЛАМИНАРНОГО ДВИЖЕНИЯ ЖИДКОСТИ  [c.350]

РАЗВИТИЕ ЛАМИНАРНОГО ДВИЖЕНИЙ ЖИДКОСТИ  [c.352]

РАЗВИТИЕ ЛАМИНАРНОГО ДВИЖЕНИЯ жидкости [гл. X  [c.354]

Развитие ламинарного движения жидкости в коническом диффузоре  [c.374]

Характер движения жидкости и границы ламинарного и турбулентного режима в основном зависят от температурного напора А/ = — t . При малых значениях температурного напора вдоль всей поверхности будет преобладать ламинарное движение жидкости. При больших температурных напорах будет преобладать турбулентный режим движения. В развитии естественной конвекции форма тела играет второстепенную роль. Основное значение для свободного потока имеет длина поверхности, вдоль которой происходит теплообмен.  [c.441]

Следует отметить, что выведенные выше закономерности и формулы (5.14)—(5.22) справедливы только для участков трубопровода с развитым ламинарным движением, которое устанавливается на определенном расстоянии от входа в трубу. При входе в трубу частицы жидкости имеют примерно одинаковые скорости по сечению и только вблизи стенок (в тонком пристенном слое) вследствие прилипания жидкости к стенкам происходит почти внезапное падение скорости до нуля. По мере удаления от входа под влиянием  [c.72]

В теории начальных участков следовало бы рассматривать задачу о развитии произвольного профиля скоростей до установившегося. Ввиду крайней сложности общей задачи большая часть существующих решений посвящена изучению развития профиля скоростей в трубах с постоянной скоростью на входе по всему сечению. В этом случае длина начального участка и процесс развития профиля скоростей будет зависеть от числа Re или, точнее, от того, каким будет поток — ламинарным или турбулентным. В обоих случаях эту задачу можно рассматривать как задачу пограничного слоя. При однородном профиле скоростей на входе скорость непосредственно на внутренней стенке трубы равна нулю. Следовательно, при движении жидкости в трубе образуется тонкий пограничный слой, толщина которого постепенно увеличивается по мере увеличения расстояния от входа. Сечение, в котором пограничные слои смыкаются, является концом начального участка.  [c.364]

При осесимметричном распаде (рис. 8.10, а) жидкой струи в ее разрушении главную роль играют силы инерции, трения и поверхностного натяжения. Под их действием на поверхности струи образуются симметричные волны, развитие которых приводит к разрушению струи. Осесимметричный распад наблюдается при относительно малых скоростях истечения. В этом случае режим движения жидкости — ламинарный.  [c.346]


Гидродинамические условия развития процесса. При вынужденном движении жидкости внутри трубы различают два режима течения ламинарный и турбулентный. Ламинарный режим наблюдается при малых скоростях движения жидкости. При скоростях потока, больших некоторого значения Шкр, режим течения переходит в турбулентный. Для различных жидкостей и трубопро-  [c.73]

Гидродинамические условия развития процесса. При вынужденном движении жидкости внутри трубы различают два режима течения ламинарный и турбулентный. Ламинарный режим наблю-  [c.78]

Развитое ламинарное течение в трубах жидкости с зависящими от температуры физическими свойствами сравнительно просто поддается аналитическому расчету. В этом случае существенное значение имеет только зависимость вязкости жидкости от температуры. Дифференциальные уравнения движения и энергии для развитого ламинарного течения в круглой трубе при постоянной плотности теплового потока на стенке определяются  [c.311]

Основы теории устойчивости ламинарного течения тонкого слоя вязкой жидкости, имеющей свободную поверхность, были разработаны П. Л. Капицей [56], который показал, что при числах Рейнольдса, больших некоторого критического значения, энергетически более выгодным является ламинарно-волновое течение. Поставленное П. Л. Капицей и С. П. Капицей экспериментальное исследование [57] подтвердило это положение, показав, что существует некоторый минимальный расход, при котором на поверхности жидкости возникают волны. При расходах, меньших минимального, волновой режим течения не развивается, причем в этих условиях искусственно созданные волны затухают. В последующие годы вопросы устойчивости ламинарного движения по отношению к малым внешним возмущениям, которые,, наложившись на основное течение, могут либо усиливаться, либо затухать, аналитически изучались рядом авторов [3, 10, 11, 45, 46, 49, 86, 91, 96, 126, 147, 149, 156, 180, 214-217]. Появилось также большое число работ, в которых развитие волнообразования на поверхности жидких пленок изучалось экспериментально [4, 15, 16, 22, 25, 28, 29, 31, 32, 40, 51, 53-55, 57, 62, 63, 66,. 67, 75, 79, 84, 85, 92-94, 97, 106, 108, ИЗ, 116, 117, 120, 133, 137,, 139, 145, 151-154, 158, 167, 169, 172, 179, 187, 188, 190, 192, 200, 206, 208, 209].  [c.190]

Важное значение для развития гидрогазодинамики имеет теория подобия и размерностей. Ее становление тесным образом связано с необходимостью экспериментальных исследований различных процессов на модельных объектах. Именно теория подобия должна была дать ответ на правомочность переноса данных лабораторных исследований на натурные объекты. Первым, кто решил эту задачу применительно к исследованию сопротивления судов, был У. Фруд (1810—1879). Значительный вклад в разработку теории подобия осуществил О. Рейнольдс (1842—1912). Его исследования движения жидкости в трубах показали возможность существования двух форм течения — ламинарного и турбулентного, причем реализация той или другой формы определялась соотношением между силами инерции и силами вязкости. Работы Фруда и Рейнольдса о физическом подобии явлений нашли широкое развитие и применение в экспериментальной аэродинамике.  [c.13]

Коэффициент теплоотдачи при продольном омывании, поверхностей нагрева зависит от режима течения жидкости. В котельных агрегатах, как правило, имеет место развитое турбулентное движение (дымовых газов, воздуха, воды, пара). Лишь в пластинчатых воздухоподогревателях, в которых течение характеризуется числами Рейнольдса менее 104, имеется переходная область от ламинарного к турбулентному режиму.  [c.41]

Непосредственно в критическом сечении и в ближайших за ним сечениях пограничного слоя движение жидкости еще нельзя рассматривать как турбулентное. Вниз по течению за критическим сечением простирается область, в которой происходит развитие возмущений и где поток перестраивается из ламинарного в турбулентный эта область носит наименование области перехода . В тех случаях, когда размеры области перехода малы по сравнению с хордой крыла, можно пренебрегать протяженностью области перехода и говорить о точке перехода в других случаях следует указывать положение границ области перехода начала ее — критического сечения слоя (границы потери устойчивости), вверх по течению от которого движение ламинарно, и конца — ниже по течению расположенной границы перехода, за которой поток уже турбулентен.  [c.587]


Эти работы положили начало бурному развитию гидравлики. Велики заслуги ученых Шези (1718—1798), работавшего в области равномерного движения жидкости Вентури (1746—1822), исследовавшего истечение через отверстия и насадки Вейсбаха (1806— 1871), в основном известного работами в области сопротивлений движению жидкости Базена (1829—1897), изучавшего равномерное движение и истечение жидкости через водосливы Рейнольдса (1842—1912), внесшего большой вклад в изучение ламинарного и турбулентного режимов движения.  [c.15]

Не делая каких-либо предположений о длине гидродинамического начального участка, определим прежде всего распределение скорости при полностью развитом ламинарном течении жидкости с постоянной вязкостью. В качестве исходного уравнения используем дифференциальное уравнение движения пограничного слоя при осесимметричном течении в круглой трубе (4-11). Очевидно, что при развитом профиле скорости Ur=0, (ди1дх)=0, и уравнение (4-11) упрощается  [c.76]

Лабириигно-винтовые уплотнения. Ла-биринтно-вйнтовые устройства применяют в качестве насосов (лабиринтные насосы) и уплотнений валов сравнительно недавно [И]. В отличие от винтовых устройств, эффективно работающих в средах с большой (по сравнению, например, с водой) вязкостью в режимах ламинарного течения, лабиринтно-винтовые уплотнения рекомендуется применять в маловязких жидкостях (в воде, сжиженных газах и т. п.) в режимах турбулентного течения. Турбулентный режим определяется конструкцией лабиринтно-винтового уплотнения, имеющего нарезки противоположного направления на втулке и винте, малой вязкостью жидкости и большой относительной скоростью движения нарезок. В связи с тем, что уплотнения работают в режиме развитой турбулентности, движение жидкости можно считать автомодельным. Его гидродинамические характеристики слабо зависят от числа Рейнольдса.  [c.414]

Перейдем к рассмотрению теплоотдачи при турбулентном движении жидкости в трубе. Развитый турбулентный режим течения в трубе осуществляется при Re lOOOO. В диапазоне 2300Re1 O в трубе наблюдается переходный режим течения — неустойчивый режим, характеризующийся сменой ламинарного и турбулентного потока. Такое состояние характеризуется так называемым коэффициентом перемежаемости, O io l, представляющим собой относительное время существования турбулентного потока величина 1—со приходится на долю ламинарного потока. Надежные рекомендации по расчету теплоотдачи при переходном режиме пока не разработаны. Поэтому возможны лишь оценки по минимальному и максимальному коэффициентам теплоотдачи для ламинарного и турбулентного режимов соответственно с учетом коэффициента перемежаемости.  [c.386]

Наиболее эффективным и надежным способом интенсификации теплообмена при кипении является применение пористых металлических покрытий. При этом пористая структура образуется либо в результате покрытия поверхности трубы тонкими металлическими сетками, либо нанесением на нее металлического порошка определенной зернистости. При этом образуется пористый слой с разветвленной системой сообщающихся между собой капиллярных каналов, через которые происходят эвакуация пара и подпитка пористой структуры жидкостью, подтекающей сюда под действием сил поверхностного натяжения. Кипение происходит как внутри пористого покрытия, так и на его поверхности. Высокая ннтен-сивность теплообмена свидетельствует о том, что пористая структура создает весьма благоприятные условия для зарождения и роста паровых пузырей. Например, авторы работы [137] указывают, что при кипении н-бутана (р= 1,27-10 Па) на гладкой трубе образование паровых пузырей по всей ее поверхности наблюдалось только при = 35 кВт/м2, а дд трубе с пористым покрытием вся поверхность трубы была занята паровыми пузырями уже при 7=1,5 кВт/м . Эти и многие другие опыты показали, что устойчивое развитое кипение на поверхностях с пористыми покрытиями устанавливается при весьма незначительных температурных напорах (перегревах жидкости). Основной причиной этого является то, что в данном случае поверхности раздела фаз возникают внутри пористого слоя [54, 130, 146]. При выбросе паровой фазы из пористой структуры в последней всегда остаются паровые включения, в которые испаряется тонкая пленка жидкости, обволакивающая стенки капиллярных каналов [54, 130]. В соответствии с моделью автора [14G] испарение микропленки происходит по всей поверхности капиллярного канала, высота которого равна толщине пористого покрытия. Таким образом, элементы пористой структуры сами являются центрами зарождения паровой фазы. Так как диаметр капиллярных каналов (10- —10 м) больше критического диаметра обычного центра парообразования, то испарение пленки в паровые включения или с поверхности капилляра требует значительно меньшего перегрева жидкости. Не менее важное значение имеет и то, что в пористой структуре перегрев поступающей в капилляры жидкости происходит в условиях весьма высокой интенсивности теплообмена. Действительно, при таких малых диаметрах капилляров движение жидкости в них всегда ламинарное. В этом случае значение коэффициента теплоотдачи определяется из условия (ас ) Д = 3,65. При диаметре капилляров 10- —10 м значение а получается равным 5-103—5-Ю Вт/(м2-К). В условиях сильно развитой поверхности пористого слоя только за счет подогрева жидкости можно отводить от стенки весьма большие тепловые потоки. Снижение необходимого перегрева, а также интенсивный подогрев жидкости существенно уменьшают время молчания центров парообразования, что также способствует интенсификации теплообмена на трубах с пористыми структурами.  [c.219]


Схема переходного процесс а. Допустим, что мы имеем дело с устойчивым ламинарным состоянием течения, которому отвечают вполне упорядоченные закономерности. Как известно, при увеличении характерной координаты состояния — числа Рейнольдса — и достижении нижнего критического значения R kp.h ламинарное движение теряет свою устойчивость. При дальнейшем росте числа Re происходит постепенное упорядочение режима течения и система переходит в новое устойчивое состояние — развитого турбулентного течения. Для последнего характерны свои закономерности (трения, теплообмена и др.). В этой картине переходного процесса основным является смена одного порядка другим, происходящая при неограниченном росте координаты состояния числа Re, отражающего борьбу двух тенденций, двух взаимоисключающих режимов — вязкостного и инерционного. Естественно, что отсчет числа Re как координаты состояния в переходной области следует вести не от нуля, а от нижнего критического значения Rskp.h при прочих данных условиях. Известно, например, что для обычных условий течения жидкости в трубе нижнее значение Некр.н 2 300 но при тщательном устранении возмущений оно может быть доведено до и более. Это обстоятельство, равно как и учет других побочных факторов, влияющих на переходный процесс (геометрия канала, начальные возмущения и пр.), должно отразиться при выборе эмпирических констант в интерполяционной формуле.  [c.150]

Будущим теоретическим исследованиям по устойчивости ламинарных движений предстоит отразить основные детали тех сложных, граничащих со случайными движений, которые возникают при потере устойчивости изучаемого начального движения, а пока внимание многих ученых привлекает гидродинамический эксперимент, на современном уровне развития позволяющий глубоко проникнуть в процессы перехода ламинарных движений в турбулентные. Появившиеся в последнее десятилетие исследования в этом направ-.тении показывают, что нелинейные эффекты в вязких потоках крайне своеобразны. Чрезвычайно характерны в этом смысле явления, возникающие в круглой трубе при переходе рейнольдсова числа через критическое значение. Явления эти аналогичны и другим случаям ламинарного движения вязкой жидкости, в частности куэттовскому движению между движущимися параллельными плоскостями, между поверхностями вращающихся соосных цилиндров и в пограничных слоях.  [c.525]

Наибольший интерес для практического использования представляет турбулентный режим движения жидкости, при котором обеспечивается наиболее высокая эффективность теплоотдачи. С введением критериев подобия oroBapHBaiQT условия перехода от ламинарного к турбулентному режиму. Как показали исследования, при значениях критерия Re<2000 в системе имеет место ламинарное движение, при Re>2000 в жидкости возникают вихри и движение становится турбулентным. Развитое турбулентное движение устанавливается при Re>10000. Режим движения при I0000>Re>2000 является переходным.  [c.45]

Наконец, Стокс исследовал случай неустановившегося движения вязкой жидкости, когда общие уравнения вырождаются в уравненйе теплопроводности для единственной ненулевой компоненты скорости движения. Развитие этого направления принадлежит Рэлею ° и связано с первыми исследованиями диффузии вихрей в вязкой жидкости (и устойчивости ламинарного движения). К сочинению Стокса 1851 г. восходит и исследование диссипации энергии в вязкой жидкости, развитое позже Рэлеем. Отметим еще связанную с обоими затронутыми вопросами работу Д. К. Бобылева , исследовайшего роль вязких сил в вихревых движениях жидкости.  [c.70]


Смотреть страницы где упоминается термин Развитие ламинарного движения жидкости : [c.420]    [c.440]    [c.10]    [c.96]    [c.73]    [c.78]    [c.85]    [c.219]    [c.541]   
Смотреть главы в:

Динамика вязкой несжимаемой жидкости  -> Развитие ламинарного движения жидкости



ПОИСК



Движение жидкости ламинарное

Движение ламинарное

Ламинарное те—иве

Развитие ламинарного движения жидкости в коническом диффузоре



© 2025 Mash-xxl.info Реклама на сайте