Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы теории устойчивости ламинарного течения

Основы теории устойчивости ламинарного течения тонкого слоя вязкой жидкости, имеющей свободную поверхность, были разработаны П. Л. Капицей [56], который показал, что при числах Рейнольдса, больших некоторого критического значения, энергетически более выгодным является ламинарно-волновое течение. Поставленное П. Л. Капицей и С. П. Капицей экспериментальное исследование [57] подтвердило это положение, показав, что существует некоторый минимальный расход, при котором на поверхности жидкости возникают волны. При расходах, меньших минимального, волновой режим течения не развивается, причем в этих условиях искусственно созданные волны затухают. В последующие годы вопросы устойчивости ламинарного движения по отношению к малым внешним возмущениям, которые,, наложившись на основное течение, могут либо усиливаться, либо затухать, аналитически изучались рядом авторов [3, 10, 11, 45, 46, 49, 86, 91, 96, 126, 147, 149, 156, 180, 214-217]. Появилось также большое число работ, в которых развитие волнообразования на поверхности жидких пленок изучалось экспериментально [4, 15, 16, 22, 25, 28, 29, 31, 32, 40, 51, 53-55, 57, 62, 63, 66,. 67, 75, 79, 84, 85, 92-94, 97, 106, 108, ИЗ, 116, 117, 120, 133, 137,, 139, 145, 151-154, 158, 167, 169, 172, 179, 187, 188, 190, 192, 200, 206, 208, 209].  [c.190]


Основы теории устойчивости ламинарного течения  [c.422]

ОСНОВЫ ТЕОРИИ УСТОЙЧИВОСТИ ЛАМИНАРНОГО ТЕЧЕНИЯ 423  [c.423]

Закончив на этом описание основных физических явлений, возникающих при течениях с очень малой вязкостью, и изложив тем самым в самых кратких чертах теорию пограничного слоя, мы перейдем в следующих главах к построению рациональной теории этих явлений на основе уравнений движения вязкой жидкости. В настоящей части книги (в главе III) мы составим общие уравнения движения Навье — Стокса, а во второй части сначала выведем из уравнений Навье — Стокса путем упрощений, вытекающих из предположения о малой величине вязкости, уравнения Прандтля для пограничного слоя, а затем перейдем к интегрированию этих уравнений для ламинарного пограничного слоя. Далее, в третьей части книги, мы рассмотрим проблему возникновения турбулентности (переход от ламинарного течения к турбулентному) с точки зрений теории устойчивости ламинарного течения. Наконец, в четвертой части книги мы изложим теорию пограничного слоя для вполне развившегося турбулентного течения. Теорию ламинарного пограничного слоя можно построить чисто дедуктивным путем, исходя из дифференциальных уравнений Навье — Стокса для движения вязкой жидкости. Для теории турбулентного пограничного слоя такое дедуктивное построение до сегодняшнего дня невозможно, так как механизм турбулентного течения вследствие его большой сложности недоступен чисто теоретическому исследованию. В связи с этим при изучении турбулентных течений приходится в широкой мере опираться на экспериментальные результаты, и поэтому теория турбулентного пограничного слоя является, вообще говоря, полуэмпирической.  [c.53]

Изложены основы флуктуационной теории П. Пригожина, которая позволяет единообразно формулировать критерии потери устойчивости ( кризиса ) для макроскопических процессов, режимов или структур в областях, далеких от состояния равновесия. Рассмотрены критическая точка жидкости, возникновение пульсаций при одномерном и вращательно-поступательном течениях несжимаемой жидкости, кризис течения газа по трубе, переход ламинарного течения в турбулентное. Для последнего процесса даны оценки числа Рейнольдса в случаях обтекания плоской пластины и течения в цилиндрической трубе, согласующиеся с опытом.  [c.119]


В заключение отметим, что решения рассмотренных уравнений вязкой жидкости лишь формально могут существовать при любых числах Я. В действительности же только то решение описывает реальное течение, которое является устойчивым по отношению к бесконечно малым возмущениям. Согласно экспериментальным данным стационарное течение тела является устойчивым при малых числах Рейнольдса, а начиная с некоторого достаточно большого числа Рейнольдса такого обтекания не существует. В первом случае траектории частиц среды имеют достаточно гладкий характер, среда движется как бы слоями, т. е. имеет место слоистое или ламинарное течение. Во втором случае частицы движутся беспорядочно, происходят хаотические пульсации скорости,, т. е. имеет место турбулентное движение.- Поскольку мы, изучая основы механики сплошных сред, не будем рассматривать вопросы устойчивости и теорию турбулентности, все приведенные далее решения описывают лишь ламинарные течения.  [c.529]

Предварительные замечания. Теоретические исследования, имевшие целью объяснить описанное выше явление перехода ламинарного течения в турбулентное, начались уже в прошлом столетии, но к успеху привели только в 1930 г. В основе всех этих исследований лежит представление, чтоI ламинарное течение подвергается воздействию некоторых малых возмущений, в случае течения в трубе связанных, например, с условиями при входе в трубу, а в случае пограничного слоя на обтекаемом теле — с шероховатостью стенки или с неравномерностью внешнего течения. Каждая теория стремилась проследить за развитием во времени возмущений, наложенных на основное течение, причем форма этих возмущений особо определялась в каждом отдельном случае. Решающим вопросом, подлежавшим решению, было установление того, затухают или нарастают возмущения с течением времени. Затухание возмущений со временем должно было означать, что основное течение устойчиво наоборот, нарастание возмущений со временем должно было означать, что основное течение неустойчиво и поэтому возможен его переход в турбулентное течение. Таким путем пытались создать теорию устойчивости ламинарного течения, которая позволяла бы теоретически вычислить критическое число Рейнольдса для заданного ламинарного течения. Предпосылкой для создания такой теории служило впервые высказанное О. Рейнольдсом следующее предположение ламинарное течение, представляя собой решение гидродинамических дифференциальных уравнений и являясь поэтому всегда возможным течением, после перехода через определенную границу, а именно после достижения числом Рейнольдса критического значения, становится неустойчивым и переходит в турбулентное течение.  [c.422]

Книга разделена на четыре части. В первой части в двух вводных главах излагаются без применения какого бы то ни было математического аппарата первоначальные сведения из теории пограничного слоя остальные главы этой части посвящены математической и физической разработке теории пограничного слоя на основе уравнений Навье — Стокса. Во второй части излагается теория ламинарного пограничного слоя, в том числе и температурного пограничного слоя. В третьей части рассматривается переход течения из ламинарной формы в турбулентную, т. е. возникновение турбулентности. Наконец, четвертая часть посвящена турбулентным пограничным слоям. Теорию ламинарного пограничного слоя в настоящее время можно считать в основном ее содержании законченной ее физические особенности полностью разъяснены, а расчетные методы разработаны до большого совершенства и во многих случаях доведены до столь простой формы, что полностью доступны инженеру. Оставшиеся неразрешенными специальные проблемы (например, пограничный слой при течении сжимаемой жидкости и пограничный слой при наличии отсасывания) носят в основном математический характер. Вопрос о переходе ламинарной формы течения в турбулентную, которым впервые начал заниматься О. Рейнольдс в 1880 г., теперь, после нескольких десятилетий безуспешной работы, нашел удачное объяснение. Теория устойчивости В. Толмина, подвергавшаяся долгое время возражениям с различных точек зрения, подтверждена теперь в полном своем объеме весьма тщательными опытами Г. Л. Драйдена и его сотрудников. При изложении проблемы турбулентного пограничного слоя я придерживался в основном полуэмпирических теорий, связанных с представлением о пути перемешивания, введенным Л. Прандтлем. Хотя, согласно последним исследованиям, эти теории несколько недостаточны, тем не менее пока не предложено взамен их ничего лучшего, что могло бы быть непосредственно использовано инженером. Напротив, полуэмпирические теории дают на многие практические вопросы вполне удовлетворительный ответ.  [c.12]


Для всей механики жидкости и газа фундаментальное значение имеет явление перехода ламинарной формы течения в турбулентную. Впервые это явление было подробно исследовано О. Рейнольдсом в восьмидесятых годах прошлого столетия при изучении движения воды в трубах. В 1914 г. Л. Прандтлю удалось экспериментальным путем, на примере обтекания шара, показать, что течение внутри пограничного слоя также может быть либо ламинарным, либо турбулентным и что процесс отрыва потока, а вместе с тем и вся проблема сопротивления зависят от перехода течения внутри пограничного слоя из ламинарной формы в турбулентную. В основе теоретического исследования такого перехода лежит предположение О. Рейнольдса о неустойчивости ламинарного течения. В 1921 г. такими исследованиями занялся Л. Прандтль. В 1929 г. В. Толмину после ряда неудачных попыток удалось впервые теоретически вычислить критическое число Рейнольдса для плоской пластины, обтекаемой в продольном направлении. Однако потребовалось еще свыше десяти лет, прежде чем теория Толмина Morjfa быть подтверждена очень тщательными экспериментами X. Драйдена и его сотрудников. Теория устойчивости пограничного слоя позволила объяснить влияние на переход ламинарной формы течения в турбулентную также других факторов (градиента давления, отсасывания, числа Маха, теплопередачи). Эта теория получила важное пр-именение, в частности, при исследовании несущих профилей с очень малым сопротивлением (так называемых лами-наризованных профилей).  [c.17]

Отмеченное совпадение результатов расчетов ламинарных течений с экспериментом служит основой для заключения о справедливости уравнений Стокса и их применимости для теоретического описания движений вязкой жидкости. Не следует, однако, думать, что отсутствие в ряде случаев возможности сделать такое заключение может служить основанием для утверждения о несоотЕетствии теории действительности. Наличие в природных условиях разнообразных, чаще всего малых по величине случайных отклонений или возмущений может либо очень слабо изменить рассматриваемое движение — это будет говорить об устойчивости движения по отношению к малым возмуш,ениям, — либо полностью его исказить, что имеет место при неустойчивости движения. Таким образом, в действительности наблюдаются только те из решений уравнений Стокса, которые являются устойчивыми по отношению к возможным возмущениям. В устойчивых движениях возникшие случайно или введенные по воле исследователя в поток малые возмущения не развиваются с течением времени, а, наборот, затухают, не влияя заметно на происходящие в потоке жидкости процессы. В противоположность этому, в неустойчивых движениях малые вначале возмущения растут, существенно-изменяя характер начального движеиия и способствуя его переходу либо к новому устойчивому движению, если таковое имеется среди возможных решений уравнений Стокса, либо к некоторому хаотическому, образованному нерегулярно движущимися и взаимодействую-  [c.664]


Смотреть главы в:

Теория пограничного слоя  -> Основы теории устойчивости ламинарного течения



ПОИСК



Ламинарное течение. Теория

Ламинарное те—иве

Основы теории

Теория течения

Теория устойчивости ламинарных течений

Течение ламинарное

Устойчивость ламинарного течения



© 2025 Mash-xxl.info Реклама на сайте