Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пружинные немагнитные

Пластмассовые пружины не только значительно легче металлических, но и надежнее их, так как не теряют эластических свойств неограниченно долгое время. Их модуль упругости — 0,1 10 кг см . Такие пружины немагнитны, обладают малой электропроводностью и теплопроводностью.  [c.167]

Принцип действия измерителя ИТП-1 основан на изменении силы притяжения магнита 2 к ферромагнитной подложке в зависимости от толщины немагнитного покрытия. Величина силы притяжения фиксируется величиной удлинения пружины 5 на передвижной шкале 11. Зависимость притяжения магнита от толщины покрытия указывается в номограмме, прилагаемой к прибору, которой и пользуются для перевода показаний шкалы измерителя.  [c.12]


Люминесцентный дефектоскоп применяется для выявления трещин, раковин и расслоений в деталях магнитных и немагнитных металлов, из цветных сплавов, а также неметаллических материалов (из пластмасс). Им следует пользоваться для контроля деталей, которые вследствие своей формы трудно поддаются намагничиванию (внутренние поверхности цилиндров, колец и пружин), л также деталей с черной и грубой поверхностью.  [c.304]

Бронза обладает высокими механическими, в частности упругими, свойствами. Она коррозионноустойчива, немагнитна, имеет высокие тепло- и электропроводность. В приборостроении бронзу применяют в основном для изготовления упругих чувствительных элементов, различного рода пружин и пружинящих деталей, от которых требуется повышенная упругая деформация при малых нагрузках, сочетание высоких упругих свойств с высокими электро- и теплопроводностью, немагнитностью и повышенной коррозионной стойкостью. Бронзу также используют для деталей, работающих на трение. В ряде случаев ее применяют в качестве немагнитного коррозионностойкого материала для изготовления силовых деталей.  [c.375]

Пружины, применяемые для работы в особых условиях (повышенная или пониженная температура, агрессивная среда, немагнитность и т. д.), изготовляются из специальных сплавов.  [c.52]

Определение толщины немагнитных покрытий на стал ь-К ых изделиях. Прибор Акулова [1]. Принцип действия прибора (фиг. 79) основан на измерении силы отрыва постоянного магнита от поверхности испытуемого ферромагнитного изделия. Сила отрыва будет уменьшаться с увеличением толщины немагнитной прослойки 1 (покрытия) между полюсом магнита 2 и поверхностью изделия. При установке прибора на испытуемую поверхность магнит прилипает к ней. При нажатии на рукоятку 3 корпус 4 прибора приподнимается, пружина 5 закручивается и стремится оторвать магнит 2 от испытуемой поверхности. В это время стрелка 6 удерживается поводком 7 и шкала 3 под ней перемещается. Когда пружина отрывает магнит от изделия, рычаг 7 поднимается Б исходное положение, а стрелка, удерживаемая силой трения, остаётся на месте. Показания стрелки характеризуют силу отрыва.  [c.179]

Для устранения этого недостатка необходимо, чтобы напряжение, поддерживаемое регулятором, повышалось с понижением температуры последнее достигается при помощи биметаллической пружины или магнитного шунта (последнее чаще). Магнитный шунт MLU (фиг. 20) представляет собой пластинку из сплава Fe -f- 30,50/о N1, теряющего магнитные свойства при t = 65° С. При нормальной окружающей температуре регулятор нагрет выше 65° С,, и пластинка, являясь немагнитной, не влияет на величину поддерживаемого регулятором напряжения. При понижении температуры нагрев регулятора уменьшается, и пластинка приобретает магнитную проводимость, в результате которой часть магнитного потока сердечника замыкается через неё помимо якорька магнитный поток, вступающий в якорёк, и магнитная сила уменьшаются, вследствие чего размыкание контактов может произойти лишь при более высоком напряжении, т. е. напряжение, поддерживаемое регулятором, повысится.  [c.298]


По конструкции (фиг. 19) реле выполняется с жёстким и мягким креплением подвижного контакта В первом типе притягиваемый сердечником якорёк упирается в подвижный контакт а перемещение последнего меняет воздушный зазор 6 замкнутого реле. Во втором типе за счёт прогиба упругой пластинки П, на которой укреплён подвижной контакт Л ], якорёк притягивается до упора в немагнитную заклёпку 3 в этом случае воздушный зазор замкнутого реле не регулируется, а перемещение неподвижного контакта меняет прогиб пластинки Л, усилие которой складывается с силой пружины. Воздушный зазор S , разомкнутого реле в обоих типах ограничивается упором У и регулируется подгибанием последнего.  [c.299]

Изменение потока реле после выключения в момент А (фиг. 73) происходит по экспоненциальному закону. Если катушка отпускает якорёк при потоке Ф, то выдержка времени реле равна М. Выдержку времени реле можно регулировать в пределах от 0,2 до 1,5 сек. изменением натяжения пружины и толщины немагнитной прокладки между сердечником и якорем.  [c.57]

На рис. 4.30 показана схема управления следящим копирным золотником при помощи чувствительных гидравлических сопел. От нагнетательного трубопровода через ответвления с диафрагмами 5 жидкость поступает к торцам центрируемого пружинами копирного золотника 6 по трубам 4 и к соплам 8, расположенным по окружности цилиндрического уступа копирного пальца 2. Зазоры между поверхностью копирного пальца и торцами сопел составляют сотые доли миллиметра. Конец копирного пальца намагничен, а корпус и детали узла копирного пальца сделаны из немагнитного материала. Копирный палец 9 притягивается к стальному копиру и наклоняется к нему. Благодаря различной величине открытия сопел давление со стороны более перекрытого сопла увеличивается, а с противоположной — уменьшается. Из-за разности давлений золотник 6 перемещается, соответственно переключая движение рабочего поршня.  [c.410]

Кроме рассмотренных пружинных сталей общего назначения в машиностроении широко применяют пружинные стали и сплавы специального назначения. Кроме высоких механических свойств и сопротивления релаксации напряжений они должны обладать хорошей коррозионной стойкостью, немагнитностью, теплостойкостью и другими особыми свойствами. К этим сталям относятся высоколегированные мартенситные (высокохромистые коррозионно-стойкие стали), мартенситно-стареющие, аустенитные (коррозионно-стойкие, немагнитные и жаропрочные) стали и др.  [c.288]

Немагнитные пружины для радиопередатчиков  [c.76]

Немагнитные пружинные сплавы. Более высокая коррозионная стойкость в сочетании с немагнитностью и отсутствием склонности к хрупким разрушениям характеризует аустенитные хромоникелевые стали.  [c.218]

Немагнитные пружинные сплавы 218— 221  [c.685]

Принцип действия прибора ИТП-1 основан на изменении силы притяжения магнита к ферромагнитной подложке в зависимости от толщины немагнитного покрытия. Сила притяжения магнита вызывает соответствующее удлинение пружины, которое фиксируется на шкале.  [c.107]

Применение. Контактные пружины и реле, немагнитные детали часов, подшипники, пружины, мембраны для месдоз, инструмент для работы на взрывоопасных установках.  [c.281]

По назначению пружинные стали можно разделить на стали общего назначения, предназначенные для изготовления изделий, обладающих высоким сопротивлением малым пластическим деформациям (предел упругости) и релаксационной стойкостью, при достаточной пластичности и вязкости, а для пружин, работающих при циклических нагрузках, и высоким сопротивлением усталости Рабочая температура таких пружин обычно не превышает J00—120 °С Стали специального назначения, предназначенные для изготовления изделий, к которым кроме необходимого высокого комплекса механических свойств (предел упругости, сопротивление релаксации напряжений, пластичность и др ), предъявляют требования по обеспе чению специальных физико химических свойств (коррозионной стойкости, немагнитности, теплостойкости и др ) Температуры эксплуатации таких пружин находятся в интервале 200—400 °С и выше В некоторых случаях необходимы пружины для работы при отрицательных температурах Имеются высоколегированные пружинные сплавы с заданными коэффициентами линейного расширения, независимым от температуры модулем упругости (в определенном температурном интервале), с высоким или низким модулем упругости и др  [c.203]


Во многих случаях пружинные сплавы в отличии от обычных конструкционных материалов должны быть в тоже время и сплавами коррозионностойкими, немагнитными или ферромагнитными, с низкой или высокой электропроводностью, с низким температурным коэффициентом модуля упругости, малой т-ЭДС в паре с медью, с большой или малой демпфирующей способностью и т. д.  [c.347]

Немагнитные пружинные стали и сплавы  [c.356]

Химический состав (%) коррозионностойких, немагнитных и высокопрочных пружинных сплавов на Со—Сг—Ni-основе (ГОСТ 10944-74)  [c.357]

Характеристики механических свойств и режимы упрочняющей обработки коррозионностойких, немагнитных и высокопрочных пружинных сплавов на основе системы Со—Сг—N1  [c.357]

Бериллиевые бронзы. Содержат 2...2,5% Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 составляет 2,7%, при 600 °С - 1,5%, а при 300 °С всего 0,2%. Закалка проводится при 780 С в воде и старение при 300 "С в течение Зч. Сплав упрочняется за счет выделения дисперсных частиц у-фазы СпВе, что приводит к резкому повышению прочности до 1250 МПа при 5 = 3...5%. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для мембран, пружин, электрических контактов.  [c.117]

Магнитный метод имеет две разновидности. Отрывной магнитный метод (рис. 5.1, а) основан на измерении с помощью пружины 4 усилия, которое необходимо приложить к магниту для отрыва его от поверхности покрытия 2, нанесенного на основной металл 1. Сила отрыва магнита коррелирует с толщиной покрытия. Метод хорошо зарекомендовал себя в производственных условиях при серийном и массовом выпуске изделий [134]. Для определения толщины покрытий предварительно строятся градуировочные кривые для эталонных юбразцов с известной то.чщиной покрытия, К недостаткам метода следует отнести влияние чистоты и структуры покрытия, а также термической обработки и химического состава основного металла на результаты измерений. Метод применяется для оценки толщины немагнитных покрытий, нанесенных на ферромагнитную основу, возможно использование его и в тех случаях, когда магнитные свойства материалов резко различаются. Некоторые приборы, основанные на этом методе, выпускаются серийно (толщиномер конструкции Н. С. Акулова, ИТП-5 и др.) и характеризуются простотой конструкции и портативностью. Пределы измерения этими толщиномерами О—2000 мкм. Наибольшая погрешность измерения 10% продолжительность измерения 5—6 с. В некоторых конструкциях приборов постоянный магнит заменен на электромагнит, и усилие измеряется не пружинными динамометрами, а изменением силы тока намагничивания.  [c.82]

Немагнитные материалы, из которых можно изготовлять различные упругие элементы (плоские и витые пружины, мембраны, снльфоны, трубчатые пружины, заводные пружины часовых механизмов, подвесы, торсионы и др.), в зависимости от условий работы должны обладать рядом физико-механических свойств высокими механическими и упругими свойствами и стабильностью их при температурах до 300—600° С достаточной пластичностью способностью к упрочнению малыми упругими несовершенствами (гистерезис, упругое последствие) и прямолинейным ходом изменения модуля упругости в интервале температур 20—600° С немагннтностью, износостойкостью, коррозионной стойкостью и др.  [c.275]

Сортамент дисперсионно-тоердеющих немагнитных коррозионностойких сплавов для пружин  [c.287]

Сол ьц В. А. Немагнитные коррозионностойкие сплавы для пружин приборов. В сб. Современная технология термической обработки деталей машин . Сб, 2. М., МДНТП, 1965.  [c.293]

КНХМВТЮ <К40ТЮ, ЭП4) 1,8—2,2 Мп 11,5—13,0 Сг 18 — 20 N1 3—4 Мо 39 — 41 Со 0,2 —0,5 А1 6 — 7 1У 1,5 — 2,0 Т1 Ре — остальное Сплав немагнитный коррозионностойкий высокопрочный (предел прочности проволоки 200 МПа), с высоким модулем нормальной упругости Для заводных пружин наручных часов. Применяется после накле па и последующего отпуска  [c.321]

Применяются для изготовления упругих элементов (мембран, пружин спиральных и плоских всех типов, пружинящих деталей), подвижных опор, немагнитных шариковых подшипников, контактных зажимов. Медь кобальтобериллиевая, токопроводящая бронза (0,4% В1 2,6 % Со  [c.348]

Принципиально новое направление в области обработки пружинных сталей — использование обратного мартенситного превращения с последующим старением аустенита Таким образом можно получить немагнитные пружинные стали с повышенным комплексом прочностных свойств (см, стр. 49). Стали этого типа с П—14% Ni и 10% Сг дополнительно легированы для создания вторичных упрочняющих фаз титаном (1—1,5%) и алюминием ( 0,5—1%), а в некоторых случаях также и вольфрамом для стабилизации субструктуры. После нагрева при 1000° С и охлаждения сталь приобретает аустенитную структуру, которая в результате сильной холодной пластической деформации превращается в мартенсит, имеющий высокую плотность -дефектов строения в результате фазового и деформационного наклепа. Мартенсит при нагреве превращается В аустенит (обратное мар-тенситное превращение), который сохраняется после охлаждения до нормальной температуры. Этот аустенит обладает повышенной плотностью дефектов строения, наследуемых от прямого мартенситного превращения, деформации и обратного мартенситного превращения и создающих измельченную рубструктуру. При последующем старении (520° С) аустенит упрочняется вследствие выделения избыточных фаз, причем характер изменения предела упругости при изотермическом старении аналогичен н людае-мому при старении мартенситностареющих сталей. Это означает, что решающее влияние на закономерности упрочнения оказывает не тип кристалической решетки, а субструктура матричной фазы.  [c.37]


В итоге применения подобной термической обработки холодного волочения пружинная проволока из сталей 70С2Х, 70ХГФА и 50ХФА соответствует по прочности углеродистой стали I и II класса по ГОСТ 9389—60, при более высокой релаксационной стойкости. Однако применение описанного нрвого процесса возможно лишь для сталей перлитного класса и поэтому на них нельзя получить высокой теплостойкости (жаропрочности), коррозионной стойкости, особенно в сочетании с немагнитностью.  [c.41]

Таким образом разработаны режимы упрочняющей термической обработки новой группы немагнитных пружинных сталей типа 03Х10Н14Т2Ю. Оптимальный режим, обработки аустени-тизация при 1000° С, деформация 80%, аустенитизация при 720° С, старение "При 500—520° С.  [c.45]

Толщиномер магнитный ИТП-1 или ИТ-60, который представляет o6ofi пружинный магнитный динамометр. Принцип действия его основан на изменении силы притяжения магнита к ферромагнитному основанию покрытия в зависимости от толщины немагнитной пленки.  [c.364]

Бериллиевый элинвар ( ниварокс ) широко применяют в Швейцарии в часовом производстве для изготовления пружин. Элинвар , прелложен-нын специально для изготовления спиральных часовых пружин, характеризуется отсутствием расширения при изменении температуры. Добавка бериллия способствует сохранению компенсирующих термоупругих свойств таких сплавов и в то же время обеспечивает возможность их дисперсионного твердения, придающего пружинам твердость и упругость, равную твердости и упругости пружин, изготовленных из углеродистой стали. Кроме того, пружины из бериллиевого элннвара немагнитны.  [c.78]

Механические свойства и режимы упрочняющей обработки проволоки из коррозиоино-стоВких, немагнитных и высокопрочных пружинных сплавов на основе системы Со—Ni—Сг (5]  [c.221]

Высокостабильные аустенитные стали, в которых мар тенсит деформации не образуется ни при каких режимах деформации и старения, используют для изготовления кор розионностойких немагнитных пружин и упругих элемен тов  [c.215]

Впоследствии сплав начали легировать титаном и алюминием (36НХТЮ), что позволило упрочнять его термической обработкой, но еще больше снизило температуру точки Кюри. В результате термической обработки сплав потерял свою ферромагнитность, а следовательно, и элин,-варность. Его используют как сплав с хорошими упругими свойствами для пружин и упругих элементов, от которых требуются немагнитность и высокая коррозионная стойкость в агрессивных средах.  [c.567]


Смотреть страницы где упоминается термин Пружинные немагнитные : [c.130]    [c.354]    [c.265]    [c.43]    [c.28]    [c.117]    [c.321]    [c.321]    [c.388]    [c.478]    [c.478]    [c.356]    [c.700]   
Металлы и сплавы Справочник (2003) -- [ c.356 ]



ПОИСК



Ч немагнитный



© 2025 Mash-xxl.info Реклама на сайте