Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Синергетика фазового перехода

Синергетика фазового перехода  [c.16]

В синергетике рассматривают неравновесные фазовые переходы, которые связывают с потерей устойчивости менее организованного (или неупорядоченного) состояния с переходам в более упорядоченное состояние, т.е. с критическим состоянием системы в точках бифуркаций. Понятие бифуркаций -это математический образ "перехода количественных изменений в качественные" [21].  [c.36]


Неравновесные кооперативные явления имеют место в открытых системах, далёких от термодинамич. равновесия, их существование связано с диссипацией энергии. Нек-рые из них обусловлены возникновением в неравновесной системе макроскопич. пространств, когерентности (диссипативной структуры)-, они в значит, степени аналогичны равновесным К. я. при термодинамич. фазовых переходах. К ним относятся когерентное излучение лазера (пример квантового неравновесного К. я.), неустойчивость Рэлея — Бекара, возникающая в нагреваемом снизу слое жидкости, образование пространственно неоднородных структур при нек-рых хим. реакциях, а также В процессе морфогенеза (см. также Неравновесные фазовые переходы). Успешное описание процессов в лазере вблизи порога генерации в терминах Ландау теории фазовых переходов 2-го рода положило начало построению единого подхода к неравновесным К. я., составляющего предмет нового научного направления — синергетики. Общая идея такого подхода состоит в следую-  [c.457]

Синергетика занимается изучением процессов самоорганизации, устойчивости и распада структур различной природы, формирующихся в системах, далеких от равновесия. Они являются общими для живой и неживой природы. Общность заключается в том, что и биологическим, и химическим, и физическим, и другим неравновесным процессам свойственны неравновесные фазовые переходы, отвечающие особым точкам — точкам бифуркаций, по достижении которых спонтанно изменяются свойства среды, обусловленные самоорганизацией диссипативных структур [5]. Движущей силой самоорганизации диссипативных структур является стремление открытых систем при нестационарных процессах к снижению производства энтропии.  [c.6]

Рассмотрение разрушения металлов как процесса, связанного с неравновесными фазовыми переходами [11], позволяет ввести обобщенные критерии разрушения, отражающие коллективные эффекты при пластической деформации и разрушении твердых тел, и самоорганизацию диссипативных структур. Из анализа разрушения с позиций синергетики следует, что сопротивление разрушению твердых тел определяется диссипативными свойствами. Показателем диссипативных свойств материала при самоподобном разрушении является фрактальная размерность, учитывающая вклад в диссипацию энергии двух основных механизмов пластической деформации и образования несплошностей. В этой связи критерии фрактальной механики разрушения являются комплексами — двух- или трехпараметрическими. В линейной и нелинейной механике разрушения, как известно, уже давно используются двухпараметрические критерии. Отличие двухпараметрических критериев фрактальной механики разрушения от критериев линейной механики заключается в том, что они определяют условия перехода разрушения на стадию самоподобного разрушения, контролируемого критической плотностью внутренней энергии и ее эволюцией в процессе роста трещины. Так как самоподобное  [c.169]


Уже давно поставлена задача получения материалов, структурно и функционально подобных живым организмам или природным органическим материалам, однако до сих пор она остается нерешенной. Это связано с тем, что сама по себе эта задача является комплексной и требует для своего решения междисциплинарного подхода с объединением усилий специалистов различного профиля для интеграции достижений в смежных науках, в том числе и в биологии. Синергетика, являющаяся теорией самоорганизации диссипативных структур в живой и неживой природе, объединила методологией и единым математическим аппаратом различные научные направления, изучающие эволюцию систем, находящихся вдали от термодинамического равновесия. Такие системы обладают общим (универсальным) свойством самоорганизации диссипативных структур в процессе обмена энергией и веществом с окружающей средой [26]. При этом в системе происходят неравновесные фазовые переходы, наблюдаются динамическая нелинейность и резонансные возбуждения. Все эти свойства характерны для системы с обратными связями. Это означает, что создание конструкционных материалов, функционально подобных живым организмам, требует разработки теории управления обратными связями, заложенными в электронном спектре сплава [13]. Обратные связи в металлах, как и в живой природе, функционируют при постоянной подаче в систему энергии.  [c.237]

Анализ разрушения следует проводить с позиций физики прочности, механики разрушения и металловедения в сочетании с положениями теории подобия. Многообещающим представляется также анализ процесса разрушения с позиций синергетики —- нового научного направления, устанавливающего законы, общие для живой и неживой природы. С позиций синергетики общие закономерности в такой области, как разрушение материалов, можно установить путем определения точек бифуркаций, отвечающих неравновесным фазовым переходам, связанным в данном случае со сменой микромеханизма разрушения, тот переход носит дискретный характер, а параметры, отвечающие этому переходу, являются фундаментальными, подлежащими определению в опыте.  [c.10]

Один из основоположников идеи самоорганизации диссипативных структур И. Пригожин в предисловии к книге От существующего к возникающему отметил ...цель книги показать читателю, что мы переживаем тот период научной революции, когда коренной переоценке подвергается место и самое существо научного подхода... . Фазовые переходы — это кооперативное явление. Синергетика рассматривает кинетику (динамику) энтропии, а функция диссипации выражается произведением потока и силы, ее  [c.101]

Следующий шаг в решении задач дальнейшей реализации богатых потенциальных возможностей, которыми обладает класс композиционных материалов, связан с использованием подходов синергетики. Синергетику можно рассматривать как часть общего системного анализа, она занимается изучением общих принципов функционирования сложных систем, состоящих из множества подсистем самой различной природы. В круг явлений, изучаемых синергетикой, входят процессы самоорганизации, развития, устойчивости и распада структур. Общность подходов синергетики базируется на том, что физическим, химическим, биологическим процессам свойственны фазовые переходы, обусловленные самоорганизацией сложных систем.  [c.5]

Однако, если просто изучать все многообразие дислокационных структур, то очень трудно выявить общие закономерности накопления повреждений в процессе усталости. Важно рассмотреть эволюцию дислокационных структур при характерных (пороговых) условиях пластической деформации и проводить анализ тех пороговых дислокационных структур, которые связаны с бифуркационным состоянием отдельных объемов материала и в которых происходит неравновесный фазовый переход, связанный с образованием новой, более устойчивой фазы - микротрещины [58, 59]. В этом смысле весьма перспективно привлечь к анализу представления синергетики (области научных исследований, целью которых является выявление общих закономерностей в процессах образования, устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных системах различной природы [60]). Подходы синергетики позволяют описывать сложное поведение открытых систем (а образец или конструкция, которые испытываются на усталость, являются открытыми системами), не вступая в противоречие со вторым законом термодинамики [61-69]. Синергетика оперирует с диссипативными структурами, образующимися в неравновесных условиях в результате обмена энергией (или энергии и веществом) с окружающей средой при подводе внешней энергии к материалу.  [c.85]


Заключительная, 13-я глава книги посвящена уже довольно давно развиваемой Г. Хакеном концепции, согласно которой лазер выступает как типичный объект исследования в современной синергетике. Подробно поясняется, каким образом в открытой системе типа лазера может происходить неравновесный фазовый переход.  [c.8]

Рассмотрены обладающие свойством универсальности принципы макротермодинамики, синергетики и фрактальной физики. На базе этих принципов развита междисциплинарная методология анализа механического поведения материалов в критических точках, позволившая установить универсальные связи параметров, контролирующих эти точки, с фрактальной размерностью структуры среды вблизи неравновесных фазовых переходов.  [c.2]

Синергетика оперирует с неравновесными фазовыми переходами, сходными с переходами I и II рода, но имеющие кинетическую природу. Они описываются с помощью бифуркационных диаграмм, связывающих в простейшем случае переменную m с управляюпщм параметром А,. Проиллюстрируем бифуркационную диаграмму, связанную с неравновесным фазовым переходом II рода на следующем примере. Рассмотрим прямоугольный стержень (рисунок 1.8), на который сверху действует нагрузка Р, контролирующая гюведение системы и поэтому является управляюгцим параметром. При увеличении нагрузки стержень сжимается, но его ось остается прямой до тех пор, пока не достигнет-ся критическая нагрузка Р =, при которой стержень потеряет устойчивость и  [c.39]

Из приведенных в предыдущем разделе данных следует, что золотая пропорция является универсальным критерием устойчивости структуры, ее гармонии и красоты, как в живой так и в неживой природе. В чем же секрет ее универсальности Ответ дает синергетика, являющаяся теорией самоорганизующихся структур. В первой главе были рассмотрены основные принципы синергетики, представления о термодинамической и динамической самоорганизации структур, а также проанализирована роль параметра порядка в процессах самоорганизации. Параметр порядка контролирует переходы термодинамическая - динамическая - термодинамическая самоорганизация. Эти переходы являются неравновесными фазовыми переходами, в процессе которых самоорганизуются новые устойчивые сфуктуры, что контролируется золотой пропорцией, являющейся кодом устойчивости структуры, генетически заложено природой.  [c.170]

Волновой характер изменения атомного объема от порядкового номера элемента (числа электронов) позволяет дать трактовку таблицы Менделеева с позиции синергетики, придав переходам от одног о периода к другому смысл неравновесных фазовых переходов, отвечающих отмеченной выше последовательности пороговых порядковых номеров 2 —> 10 —> 18... На этой основе отношение предыдущего номера N к последующему N j можно представить  [c.179]

Уже признано, что расплавы являются кластеризированной средой и что для описания поведения такой среды при нагрузке требуется использование термодинамики открытых систем. Это связано с тем, что в рамках термодинамики Д. Гиббса нельзя описывать возникновение и устойчивость атомных кластеров ввиду их малых размеров. В этом случае необходимо использование принципов макродинамики и синергетики, описывающих поведение систем далеких от равновесия, в точках неустойчивости системы, связанных с неравновесными фазовыми переходами.  [c.220]

Перколяцией называется процесс протекания жидкостей через пористые среды. Этот термин происходит от английского слева per olation - просачивание (протекание). Теория перколяций, получившая свое развитие более 30 лет тому назад, также как и синергетика изучает неравновесные фазовые переходы, но в теории перколяций эти переходы носят чисто геометрический характер.  [c.334]

Критические показатели в теории перколяций, как и в синергетике, обладают свойством универсальности и самоподобия. Универсальность означает, что все критические показатели определяются лишь размерностью пространства, а самоподобие - возможность характеризовать свойства объекта фрактальной размерностью. Поэтому перколяционные кластеры фрактальны, а критические показатели не зависят от выбора модели. Теория перколяций отвечает на вопрос, возможно ли в данной среде протекание, и если да, то с какой скоростью Для решения подобных задач используется решеточная модель протекания. Она связана с рассмотрением решеток в виде совокупности уз1юв и связей. Каждый данный узел можно выделить, если пометить его определенным цветом, например, черным. Совокупность связанных друг с другом черных узлов называют черным кластером, концентрация х которых может быть различной. При х=0 черные кластеры отсутствуют, а при х 1 черные кластеры представляют собой совокупность малого количества узлов (одиночные узлы, пары и т.п.). При х=1 все узлы черные при (1-х)<1в системе имеется бесконечный черный кластер. Таким образом, предполагается наличие критической концентрации Хс, при которой возникает фазовый переход, каковым и является образование бесконечного кластера. Параметром порядка при этом является мощность бесконечного кластера р и ги доля узлов, принадлежащих бесконечному кластеру этой величины. При анализе перколяционных кластеров каждому узлу задается число Xjj в интервале [О, 1], которое характеризует вероятность того, что в данную ячейку может просочиться жидкость  [c.334]

Рассмотрение явления разрушения мегаллов как процесса, связанного с неравновесными фазовыми переходами, гюзволяет ввести обобщенные критерии разрушения, отражающие коллективные эффекты при пластической деформации и разрушении твердых тел при самоорганизации диссипативных структур. Из анализа разрушения о позиций синергетики следует, что устойчивость процессов деформации и разрушения твердых тел определяется диссипативными свойствами среды вб]щзи точек неустойчивости. Показателем этих свойств вблизи неравновесных фазовых переходов являются двух- и трехпараметрические критерии, учитывающие кооперативное взаимодействие пластической деформации и разрушения. В этой связи критерии фрактальной механики разрушения являются комплексами - двух- или трехпараметрическими. Отличие двухпараметрических критериев фрактальной механики разрушения от используемых в линейной механике заключается в том, что они включают только критерии, контролирующие неравновесные фазовые переходы и охра-  [c.340]


Пример Н. ф. п. — возникновение лазерной генерации. С термодинамич. точки зрения лазер представляет собой неравновесную систему, т. к. она включает в себя атомы и ноле, к-рые связаны с резервуарами, имеющими раал. темп-ры. При слабой накачке активные атомы излучают независимо друг от друга. С увеличением накачки лазер переходит в когерентное состояние, в к-ром все атомы излучают в фазе. При этом обнаруживается аналогия с фазовыми переходами 2-го рода. Подобная аналогия имеет место при Н. ф. п. и в др. системах физических (образование конвективных ячеек Бенара возникновение осцилляций напряжённости алектрич. поля в диоде Ганна), химических (появление автоколебаний и автоволн при хим. реакциях), биологических (переход в режим ритмич. активности нейтронных ансамблей образование неоднородных структур ври морфогенезе) и т. д. Рассмотрение этих явлений в рамках единого подхода, использующего Ландау теорию фазовых переходов и теорию нелинейных колебаний и волн, составляет основу синергетики.  [c.329]

Эффекты бистабильности (или мультистабильности), соответствующие скачки и гистерезисные явления характерны для мн. систем с положительной О. с. Напр,, рис. 4 имеет качественно тот же вид, что в V — Г-диаг-рамма, описываемая ур-нием Ван-дер-Ваальса т. о., бистабильные системы ведут себя подобно системам с фазовым переходом (см. Синергетика).  [c.386]

Относительную стабильность металлических стекол оценивают по разности температур кристаллизации Тк и стеклования Tg при неп рерывном нагреве ДТ=Ту-Тк. Однако на практике чаше всего используют температуру кристаллизации Т , так как Tg установить трудно. Теоретически Tg определяют как температуру, ниже которой вре мя релаксации так велико, что равновесное состояние не может быть достигнуто за конечный промежуток времени (рис. 4.1). Отсюда следует, что при температуре стеклования Tg не могут образовываться зародыши кристаллической фазы критического размера, т.е. структуры фаз при Tтемпературные зависимости показателей основных физических свойств фаз испытывают или скачки или переломь[ (рис. 4.2). С позиций синергетики температура стеклования является критической температурой (точкой бифуркации), отвечающей неравновесному фазовому переходу при достижении которого система сама выбирает термодинамический путь своего дальнейшего развития [3].  [c.125]

Термин синергетика произошел от греческого слова синергиа , л означающего содействие или сотрудничество (кооперация). Синергетика изучает процессы самоорганизации, развития, устойчивости и распада различных структур, которые являются общими для живой и неживой природы. Общность заключается в том, что биологическим, химическим, физическим и другим процессам свойственны неравновесные фазовые переходы, отвечающие особой точке (точке бифуркации), при достижении которой скачкообразно изменяются свойства среды.  [c.101]

В настоящей главе рассмотрена эволюция дислокационной структуры при циклическом нагружении и показано, что разрушение микроотрывом с точки зрения синергетики является неравновесным фазовым переходом в трикритиче-ской точке.  [c.102]

Если рассматривать зависимость сопротивления материала разрушению от условий нагружения с позиций синергетики, то можно заключить, что эта зависимость присуща процессу разрушения. Суть ее заключается в проявлении при разрушении различных свойств в точках бифуркации, отвечающих смене типа диссипативных структур, при неравновесных фазовых переходах. Следствием этого является различие в рельефе поверхности. Топография поверхности разрушения непосредственно связана с энер1 ией, необходимой для движения трещины, зависящей в свою очередь от типа диссипативной структуры, формирующейся на стадии предразрушения. Критерии трещиностойкости ли-  [c.111]

В книге рассмотрены ключевые проблемы синергетики неравновесных конденсированных сред, для адекватного описания которых стандартные представления типа фононов оказываются неприменимыми, а картина фазовых переходов требует существенной модификации. Концепция авторов основывается на представлении сложной системы самосогласованной эволюцией гидродинамической моды, характеризующей коллективное поведение, поля, сопряженного этой моде, и управляющего параметра, отвечающего за перестройку атомных состояний. Развитый подход позволяет представить такие особенности, как неэргодичность статистического ансамбля, образование иерархических структур, критическое замедление релаксации среды, влияние подсистемы, испытывающей превращение, на окружающую среду. В результате построена единая картина, охватывающая такие разнородные явления, как структурные превращения, пластическая деформация и разрушение твердого тела. Это делает Книгу интересной для широкого круга научных сотрудников, аспирантов и студентов старших курсов физико-математических, естественно-научных и инженерных специальностей.  [c.2]

Будучи наукой о самоорганизующихся системах, синергетика позволяет понять особенности коллективного поведения сильно неравновесных статистических ансамблей в физике, химии, биологии, социологии и т.д. Вместе с тем при исследовании конденсированной среды до последнего времени использовались методы равновесной статистической физики. Это связано с предположением, что конденсированная среда, находящаяся под воздействием, сохраняющим ее как таковую, представляет равновесную или слабо неравновесную статистическую систему. В последнее время, однако, возрос интерес к явлениям, в которых поведение статистического ансамбля атомов в конденсированном состоянии становится таким, что обычные представления (типа концепции фононов или термодинамической картины фазовых переходов) теряют применимость, либо требуют принципиальных изменений. Такое поведение связано с сильным отклонением атомной системы от равновесного состояния — как это имеет место, например, в ядре дефекта кристаллической решетки или зонах пластического течения и разрушения. Последовательная картина сильно неравновесной конденсированной среды требует использования методов, которые позволяют представить такие особенности как неэргодичность статистического ансамбля, возникновение иерархических структур, структурная релаксация, взаимное влияние подсистемы, испытывающей фазовый переход, и окружающей среды и т. д. Целью настоящей монографии является всестороннее исследование такого рода особенностей в рамках концепции о перестройке атомных состояний при значительном удалении от равновесия. Это достигается на основе синергетической картины, представляющей взаимно согласованную эволюцию гидродинамических мод, параметризующих систему.  [c.6]

Кинетические особенности фазового перехода, найденные на основе модельных соображений [13], легко объясняются в рамках синергетического подхода, если ослабить стандартный принцип соподчинения [1], принимая, что наибольшим временем релаксации обладает не одна, а две гидродинамические степени свободы. В результате фазовый переход представляется системой двух дифференциальных уравнений, и задача сводится к исследованию возможных сценариев превращений второго (п. 1.1) и первого (п. 1.2) родов. Существенным преимуществом синергетического подхода является то обстоятельство, что он позволяет, не обращ1аясь к узким модельным соображениям, учесть действие обобщенного принципа Ле-Шателье. В этом смысле полученные ниже результаты носят достаточно общий характер. Что касается использования системы Лоренца, то известно, что она выделена в синергетике как одна из простейших схем, позволяющих учесть эффект самоорганизации. В частности, гамильтони-. ан, воспроизводящий недиссипативные слагаемые уравнений Лоренца, имеет простейший вид фрелиховского типа (см. 4). Что касается диссипативных вкладов, то они представляются в рамках полевой схемы ( 3) удлинением производных по времени, определяющих диссипативную функцию.  [c.20]


Книга Г. Хакена Лазерная светодинамика представляет собой второй том капитального трехтомного издания, которое автор объединил названием Свет . Имя профессора Штутгартского университета (ФРГ) Германа Хакена хорошо известно советскому читателю по двум монографиям, выпущенным издательством Мир на русском языке в 1980 и 1985 гг. [1,2]. Эти книги служат введением в бурно развивающуюся ныне теорию неравновесных фазовых переходов и кооперативных процессов самоорганизации, для которой Г. Хакен предложил новый термин синергетика . Многие советские специалисты знают также фундаментальный обзор Г. Хакена по теории лазера [3], который сначала составил содержание 25-го тома известной Энциклопедии физики , а затем вышел в свет отдельным изданием в виде самостоятельной книги.  [c.5]


Смотреть страницы где упоминается термин Синергетика фазового перехода : [c.168]    [c.209]    [c.91]    [c.60]   
Смотреть главы в:

Синергетика конденсированной среды  -> Синергетика фазового перехода



ПОИСК



Синергетика

Фазовый переход



© 2025 Mash-xxl.info Реклама на сайте