Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы изображения систем

Методы изображения систем  [c.82]

Метод изображения систем двух взаимных пар более искусственный, поэтому в некоторых случаях это затрудняет но-  [c.201]

Различные методы изображения систем с числом компонентов 2 и более подробно рассмотрены в монографиях Н. С. Курнакова [И],  [c.38]

Применение численного интегрирования. Наиболее эффективным методом решения систем дифференциальных уравнений (43) является численное интегрирование. В общем случае эти уравнения нужно решать при начальных условиях t = [//= qj = qjo- Ha рис. 22 изображен график зависимости Sj от qj ъ случае пружинно-фрикционного аппарата. Математическое описание этой силовой характеристики имеет вид [23]  [c.430]


В термодинамике широко используется графический метод изображения состояний и процессов. Так, например, в случае однородных систем (газ или жидкость) состояния системы изображают точками, а процессы — линиями на плоскости Р . Легко понять, что такое графическое изображение возможно только для равновесных состояний и равновесных (обратимых) процессов, так как определенные значения параметров (например, давления) система имеет только в равновесных состояниях. В дальнейшем, вплоть до главы IX, мы будем везде, где это не оговаривается особо, рассматривать равновесные процессы.  [c.14]

Решение задачи (6.44) найдем методом изображений, т.е., считая упругую систему безграничной, пустим по ней дополнительные фиктивные нагрузки так, чтобы условие замкнутости U s+ /, t ) — = U s t) оказалось выполненным наряду с граничными условиями в точке контакта. Очевидно, что поле, создаваемое нагрузками Д движущимися со скоростью QR, на одинаковом расстоянии друг от друга, равном длине колеса, удовлетворяет этим требованиям. Следовательно, вспомогательная задача, решение которой совпадает с решением (6.44) при S G [ОД], запишется в виде  [c.259]

Для решения поставленной задачи применим метод изображений. Для этого вводим М вспомогательных систем координат  [c.204]

Метод изображения тройных систем  [c.57]

Инсаров В. В. Разработка теоретических основ построения и методов исследования систем управления движущимися объектами, использующих обработку изображений и распознавание образов на земной поверхности. Отчет по НИР. Гос. НИИ авиационных систем, 1999 г., Москва.  [c.189]

На рис. 8-2 показана объединенная диаграмма трех основных химических типов вод. Метод изображения состава вод на трех солевых проекциях четырехкомпонентных систем предложен  [c.224]

В монографии приведены основы физико-химического анализа с методами изображения водно-солевых систем и различными приемами расчетов, а так же основные свойства минералов, гидрохимические и геохимические характеристики морей и соляных озер.  [c.1]

Исследования Н. С. Курнакова и его школы в области взаимосвязи между строением химической диаграммы и свойствами систем позволили более глубоко проникнуть в сущность исследуемых процессов. В настоящее время графические методы изображения служат не только в качестве наглядного пособия, но и в качестве метода физико-химического анализа опытных данных.  [c.29]

Глава III. Методы, изображения водно-солевых систем  [c.30]


Так, например, на рис. 223, а и (5 изображен физический маятник в состоянии равновесия, но в положении, изображенном на рис. 223, а, потенциальная энергия маятника минимальна и равновесие устойчиво, а на рнс. 223, б потенциальная энергия максимальна и равновесие неустойчиво. Такой маятник является механической системой с одной степенью свободы. Колебания систем со многими степенями свободы складываются из простых колебаний около положения устойчивого равновесия. Указанный Лагранжем метод изучения колебаний (см. 62) имеет громадное применение в различных отраслях науки н техники и, в частности, в теории вибрации машин.  [c.401]

Аналогичные соображения лежат в основе цветной голографии. Для осуществления цветного изображения по методу Денисюка можно зарегистрировать голограмму, используя освещение объекта (одновременно или последовательно) излучением, имеющим в своем спектре три линии (красную, зеленую и синюю). Тогда в толще фотоэмульсии образуются три системы стоячих волн и соответственно три системы пространственных структур. При восстановлении изображения с помощью белого света каждая из указанных систем будет формировать свое изображение объекта в свете соответствующего спектрального участка, примененного во время экспонирования. Поскольку положение изображения не зависит, согласно изложенному в предыдущем параграфе, от длины волны, мы получаем три совмещенные изображения в трех участках спектра, а этого уже достаточно для восстановления цветного изображения.  [c.265]

Этот метод принципиально прост и дает хорошие результаты, но обычно громоздок и страдает отсутствием общности, так как требует последовательного сшивания решения для каждого этапа с последующим, начиная с этапа, характеризующегося выбранными начальными условиями. Безусловное его преимущество состоит в том, что он пригоден для любых систем с любыми характеристиками трения и нелинейности консервативных элементов и не требует аналитической аппроксимации этих зависимостей, а может с успехом применяться при наличии графического изображения соответствующих характеристик.  [c.46]

Проиллюстрируем метод на примере задачи о кручении тонкостенного стержня замкнутого профиля, например такого, который изображен на рис. 9.8.1. Штрихами показана средняя линия профиля, образующая систему замкнутых многоугольников, занумерованных цифрами 1, 2, 3, 4, 5. Внешнюю область мы будем обозначать индексом нуль. Участок профиля между многоугольником 1 и многоугольником 2, например, мы будем обозначать двойным индексом 12. Рассмотрим стенку rs, изображенную от-  [c.297]

Взаимная пара бромид кальция — сульфат натрия по характе- 2Na i ру химического превращения относится к системам, практически односторонним. Поскольку-концентрации солей (например, бромида кальция и сульфата кальция) различаются на 2—4 порядка, изображение такой системы взаимной пары очень затруднительно. Сложность пользования диаграммы возрастает вследствие необходимости вести с ее помощью технологические расчеты и изображать физикохимические превращения, происходящие в системе. Для таких случаев предложен метод изображения систем, состоящий в следующем.  [c.187]

В первой части рассмотрен предмет галургии и его взаимосвязь с другими научными и техническими дисциплинами. Очень кратко изложены основы физико-химического анализа. Для удобства читателей важнейпше методы изображения гетерогенных систем и различные приемы расчетов (с примерами) выделены в отдельные главы. Дана физико-химическая характеристика основных свойств солей и их растворов, а также отмечены существующие методы определения растворимости, кинетики растворения, теплот растворения минералов, испаряемости рассолов и некоторых других параметров водно-солевых систем. В конце этой части помещены главы, в которых рассмотрены важнейпхие вопросы гидрохимии соляных рассолов, а также геохимии солевых месторождений.  [c.9]

Альтернативным методом решения систем уравнений, описывающих последовательное построение изображения осевого источника [см. выражение (7.6.1)], является использование формализма лучевых матриг (см. разд. 2.15). Этот метод представляет собой по существу метод, разработанный Пирсом для анализа прохождения электронного пучка  [c.508]


Методы и средства оценки качества передачи и воспроизведения изображения систем оптической дефектоскопии. Квалиметрическая оценка визуальных систем. Оценка качества систем передачи и воспроизведения изображений проводится по специальным тестам (испытательным таблицам, мирам и т.д.). Тесты, как правило, состоят из тех или иных двухмерных фигур или из шфихов достаточно большой длины. Выбор формы двухмерных фигур зависит от назначения системы.  [c.527]

Этот метод изображений можно употреблять и в более сложных случаях. Вместо одного можно взять некоторую систему источников и стоков или некоторую замкнутую кривую, изгбражающую обтекаемое тело. Поток, обтекающий такую систему в присутствии прямолинейной стенки Рр, можно получить, введя зеркальное изображение системы относительно прямой PQ,  [c.24]

Правила выполнения чертежей пружин (401 ) Условные изображения зубчатых колес, реек, червяков и звездочек цепных передач (402 ) Правила выполнения чертежей цилиндрических зубчатых колес (403 ), зубчатых реек (404 ), конических зубчатых колес (405 ), цилиндрических червяков и червячных колес (406 ), червяков и колес червячных глобоид-ных передач (407), звездочек приводных роликовых и втулочных цепей (408), зубчатых (шлицевых) соединений (409 ), металлических конструкций (410 ) труб и трубопроводов и трубопроводных систем (411), чертежей и схем оптических изделий (412 ). Правила выполнения конструкторской документации изделий, изготовляемых с применением электрического монтажа (413 ) Правила вьшолнения чертежей жгутов, кабелей и проводов (414 ), изделий с электрическими обмотками (415 ) Условные изображения сердечников магни-топроводов (416) Правила выполнения чертежей печатных плат (417 ) Правила выполнения конструкторской документации упаковки (418 ) Правила выполнения документации при плазовом методе производства (419 ) Упрошенные изображения пошшшников качения на сборочных чертежах (420 ) Правила выполнения рабочих чертежей звездочек для пластинчатых цепей (421), цилиндрических зубчатых передач Новикова с двумя линиями зацепления (422), чертежей элементов. гштейной формы и отливки (423 ), чертежей штампов (424), рабочих чертежей звездочек для зубчатых цепей (425), звездочек для разборных цепей (426), звездочек для круглозвенных цепей (427) Правила вьшолнения чертежей поковок (429 ).  [c.313]

Для пространственного эскиза данный метод является наиболее простым. Для придания объемного характера модели на эскизе необходимо лишь единообразие визуального признака каждой плоскости. Независимо от очертания области, ее величины все теневые грани должны быть тождественными по своему тональному решению. То же самое относится к светлым граням и полутеням изображения. Именно визуальный контраст разных систем и единообразие решения тона плоскостей, принадлежащих к одной системе, приводит к Д0ЛЖ1Н0Й выразительности решения. Пример ошибочного решения, в котором нарушен этот принцип, показан на рис. 1.5.6.  [c.58]

Второе важное направление развития средств диагностирования машин связано с применением автоматизированных систем обработки изображения (АСОИЗ). Очевидно, что наибольший объем диагностической информации на практике можно представить в двух- или трехмерном виде. Тра щци-онно и стабильно по этому пути развивается рентгенография, рентгенотелевидение, тепловидение, эндоскопия, оптическая и ультразвуковая голография, звуковидение, магнитопорошковые, магнитографические, капиллярные методы и средства контроля качества.  [c.225]

Проекторы предназначены для контроля н измерения деталей, спроецированных в увеличенном масштабе на экран. Проекторы могут работать в проходящем и отраженном свете. Их используют главным образом для контроля изделий со сложным профилем шаблонов, плат, лекал, зубчатых колес, HiTaMnoBaHHbix детален, фасонных резцов и т. п. Свет от источника (рис. 5.17, а и б) через конденсор 1 параллельным пучком направляется на проверяемую деталь 2. Объективом 3 действительное обратное изображение детали, через систему зеркал 5—6 проецируется на экран 4. Контролируемое изображение детали на экране можно проверять различными методами, например сравнения с вычерченным в увеличенном масштабе номинальным контуром с двойным контуром, вычерченным в соответст-вки с 1]редельными положениями годного профтля показаний от-счетных устройств проектора с помощью масштабных линеек совмещением противоположных контуров детали. В соответствии с ГОСТ 19795—82 выпускают проекторы типа ПИ с экраном диаметром до 250 мм 250—400 мм и свыше 400 мм. Часовой проектор ЧП (рис. 5.17, б) состоит из осветителя I, сменных конденсоров 3, стола 5 с продольным и поперечным винтами 4 п 9 (цена деления  [c.129]

Значение предложенного Аббе метода оценки разрешающей силы микроскопа заключается также в том, что он открывает дополнительную возможность его применения любой волнистый рельеф можно рассматривать как некоторую фа.ювую решетку. Для наблюдения ее изображения нужно превратить такую фазовую решетку з амплитудную, т.е п систему светлых и темных полос. В теории фазовой решетки доказывается, что это можно сделать, если уменьшить или увеличить на п/2 разность фаз между волнами, ответственными за нулевой спектр и спектры высших порядков. Цернике указал, что для этого достаточно внести тонкую стеклянную пластинку в фокальную плоскость объектива микроскопа. На область в центре такой пластинки, где локализован максимум нулевого порядка, наносится тонкий прозрачный слой, который изменяет на п/2 фазу волны, распространяющейся в направлении только этого спектра. Для осуществления такого изменения фазы глой вещества с показателем преломления п должен иметь толщину ./4(п — 1). Этот метод, получивший название фазового контраста, позволяет исследовать очень нечеткие структуры и играет большую роль в различных приложениях.  [c.344]


Использование ультрафиолета дает еще одно важное преимущество. Многие объекты, особенно биологические, во всех своих частях одинаково прозрачны для видимого света, вследствие чего их наблюдение в видимом свете затруднено. Но для ультрафиолетового света обнаруживается значительное различие в показателе поглощения разных частей объекта, так что соответствующие микрофотографии оказываются достаточно контрастными. Е. М. Брум-берг разработал весьма остроумную систему, позволяющую превосходно использовать различие в поглощении разных длин волн. Снимая препарат в трех группах длин волн и рассматривая все три фотографии одновременно в специальном приборе, снабженном тремя светофильтрами, соответственно передающими различие в этих трех группах длин волн, мы получаем по методу Брумберга очень богатое деталями изображение с разрешением, соответствующим короткой длине волны, примененной при фотографировании.  [c.357]

Мультипликация (размножение) изображений занимает важное место в технологии производства интегральных схем для микроэлектроники. Мультиплицирование требуется при использовании группового метода изготовления изделий, в многоканальных системах обработки информации (например, при распознавании образов), а также необходимо для систем хранения и размножения информации и ряда других случаев. Обычно процедура преобразования отдельного изображения в большое число идентичных изображений осуществляется последовательным формированием изображений шаблона с помощью оптико-механических мультипликаторов, которые представляют собой сложнейший комплекс оптических, механических и электронных устройств, работающих во взаимосвязи.  [c.61]

Используя метод, который был уже нами применен в пункте первом этого параграфа, можно данную систему сил Р , Р , / зпривести к двум силам аО и Оа (так как Об=Оа), равным по модулю и направленным вдоль параллельных прямых МА я СМ в противоположные стороны (рис. 98, а). Отсюда следует, что заданная система сил Р , р2, Ра действительно приводится к паре сил (аО, Оа). Момент этой пары равен аО к, где /г-т-плечо пары, представляющее собой кратчайшее расстояние между крайними сторонами веревочного многоугольника. При этом следует иметь в виду, что модуль аО силы аО измеряется в масштабе сил, который был выбран при построении силового многоугольника, а плечо пары измеряется в масштабе длин, который был выбран при изображении рис. 98, а.  [c.138]

Следует подчеркнуть, что в изложенном методе Льенара, учитывающем нелинейную зависимость силы трения от скорости (или обратной э. д.с. на сопротивлении от силы тока) нужно знать лишь ее графическое изображение, которое может быть получено и экспериментально. При этом построении, очевидно, нет никаких существенных ограничений на вид функции потерь ф (у) и ее мгновенное значение, так что данный метод с одинаковым успехом применим как к случаю малых, так и к случаю больших потерь, а также к системам с большой и малой нелинейностью в диссипативном элементе. Последнее обстоятельство придает методу Льенара большую общность и позволяет с его помощью изучать колебательные свойства систем при изменении затухания от малых до весьма больших значений и с учетом различных законов трения (как линейного, так и существенно нелинейных законов). Заметим, что метод Льенара широко используется для построений фазовых портретов автоколебательных систем с разными законами нелинейности, а именно для нахождения устойчивых предельных циклов — замкнутых фазовых траекторий.  [c.57]

Метод Жуковского можно применить для нахождения вели чины какой-либо силы, если точка прило кения и линии действия этой силы заданы, а также известны линии действия, величины и точки приложения всех остальных сил, действующих на разные звенья механизма. При исследовании АЬижения механизма, находящегося лод действием приложенных сйл, удобно все силы, действующие на механизм, заменить силами, приложенными к одному из звеньев механизма. П )и этом необходимо, чтобы работа заменяющей силы на рассматриваемом возможном перемещении была равна сумме работ всех сил, приложенных к механизму. Заменяющие силы, удовлетворяющие этим условиям, называют приведенными. Величина приведенной к точке силы, заменяющей всю действующую на механизм систему сил, по величине равна уравновешивающей силе, но по направлению приведенная и уравновешивающая силы противоположны. Применим метод Жуковского к нахождению приведенной или уравновешивающей Ру силы. Пусть на звенья 2иЗ изображенного на рис. 350, а механизма действуют силы и Р , приложенные в точках С и D. Силы Ра и Рз представляют собой равнодействующие всех действующих на звенья 2 и 3 сил, включая и силы инерции. Очевидно, что в общем случае под действием произвольно выбранных сил механизм не будет находиться в равновесии. Для приведения механизма в равновесное состояние необходимо в какой-либо точке механизма приложить уравновешивающую силу Ру, задаваясь ее лйнией  [c.363]

Такие методы, как радиографический, рентгеиотелевизионный, магни-топорошковый, капиллярный и другие, результаты которых оператор оценивает визуально по изображению дефекта, автоматизированы не полностью. Создание автоматизированных систем обработки изображения (АСОИЗ) для указанных методов — наиболее актуальная задача.  [c.28]

Микроструктура поверхности объекта контроля не должна существенно меняться в процессе получения голограммы. Допустимые изменения микрорельефа поверхности составляют доли микрометра. Это, в частности, затрудняет контроль изделий, поверхность которых в яроцессе испытаний может подвергаться структурным изменениям (появление усталостных микротрещин ИТ. д.), а также контроль методом сравнения с эталоном. Вместе с тем это дает возможность создания высокочувствительных систем регистрации таких изменений, основанных на анализе степени размазывания (размытия) голографического изображения объекта, подвергаемого, например, циклическому нагружению. Существующие методы и устройства позволяют учесть эти ограничения и эффективно применять голографические методы испытаний.  [c.55]


Смотреть страницы где упоминается термин Методы изображения систем : [c.82]    [c.39]    [c.91]    [c.363]    [c.4]    [c.111]    [c.126]    [c.41]   
Смотреть главы в:

Теоретические основы процессов переработки металлургического сырья  -> Методы изображения систем



ПОИСК



Изображений метод

Метод изображения тройных систем

Метод систем

Методы изображения водно-солевых систем

СИСТЕМЫ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВЫХ ИЗОБРАЖЕНИИ Джейкобс Оптические и механические методы

Современные методы неразрушающего контроля автоматизированные средства диагностирования с анализом сигналов во времени и системами обработки изображения (АСОИЗ)

Тройные системы методы изображени



© 2025 Mash-xxl.info Реклама на сайте