Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неоднородные напряжение и деформации

В области промежуточных скоростей деформации (величина А(Г сравнима с пределом текучести материала сГт) ступенчатое изменение скорости движения подвижной головки образца ведет к резкой неоднородности напряжений и деформаций по длине его рабочей части — локализации деформации и связанному с ней разрушению вблизи подвижной или неподвижной головки р зависимости от скорости. Критическая скорость удара, образование двух шеек, разрушение вблизи одной из головок — характерные особенности таких испытаний.  [c.80]


Монография написана, на наш взгляд, методически чрезвычайно удачно, вполне строго и вместе с тем достаточно просто. На основе традиционных концепций однородного напряженно деформированного состояния выясняются наиболее существенные особенности механического поведения вязких, упругих и высокоэластичных сред и предлагается оригинальный, сравнительно несложный метод формулирования соответствующих уравнений реологического состояния. Автор обходится элементарным математическим аппаратом векторного исчисления и системами лагранжевых координат с подвижным локальным векторным базисом (так называемые конвективные системы координат). Тем самым он облегчает неподготовленному читателю усвоение материала, добиваясь в первую очередь физической ясности изложения. Математически строгая постановка и анализ исследуемых задач в случае неоднородных напряжений и деформаций даются лишь в главе 12, где с помощью тензоров кратко излагается теория конечных деформаций в вязко-эластичных средах. Правда, здесь изложение слишком уж конспективно, и многочисленные доказательства , как правило, сводятся к перечню  [c.7]

НЕОДНОРОДНЫЕ напряжение И ДЕФОРМАЦИИ  [c.378]

Ограничение однородности было введено отчасти из-за использования элементарного математического аппарата, базирующегося на векторном, а не на тензорном исчислении. С другой стороны, преждевременное обсуждение неоднородных напряжений и деформаций могло затемнить понимание физической сути обсуждаемых вопросов. Однако при детальном анализе вопросов, представляющих практический интерес, от этого ограничения следует отказаться. Неоднородные напряжение и деформация возникают в большинстве прикладных задач, а также в фундаментальных опытах по определению разностей нормальных компонент напряжения в сдвиговом течении (см. главу 9).  [c.378]

Гл. 12. Неоднородные напряжение и деформации  [c.382]

Гл. 12. Неоднородные напряжение и деформации Привлекая (12.57) с Ф = я.-у и Fij = pij, найдем  [c.412]

Сварные соединения более подвержены коррозионным поражениям по сравнению с основным металлом в связи со структурными изменениями металла, неоднородностью структуры и свойств, наличием остаточных напряжений и деформаций.  [c.44]

Если бы в стержне (рис. 20 ) возникало неоднородное напряженное состояние, деформация в сечении А определялась бы путем предельного перехода к малому участку длиной Фг и тогда,  [c.32]

Местные изменения формы и размеров сечений. Отверстия, выточки и прочие нарушения формы и размеров сечений вызывают резкое и значительное изменение картины распределения напряжений и деформаций. Однако это возмущение носит местный характер и на напряженное и деформированное состояние стержня в целом влияет незначительно. Поэтому, определяя прогибы и углы поворота сечений, отверстия и прочие нарушения не учитывают. При расчете на прочность касательные напряжения не принимают во внимание, а основное условие прочности записывают для опасной точки, расположенной в одном из ослабленных сечений, так как здесь может иметь место концентрация напряжений ( 65). В зависимости от чувствительности материала к концентрации условия прочности будут иметь различный вид, а именно для высокопластичных материалов (малоуглеродистых сталей, меди, алюминия) и хрупких неоднородных материалов (чугунов) концентрацию можно не учитывать и условие прочности записывать в обычном виде  [c.315]


Для пластической деформации скольжением и двойникованием общим являются их дислокационный механизм и однородность деформации. Геометрия и дислокационная модель скольжения объясняют поворот осей кристалла в процессе деформации. Теория пересечения двойника скользящей дислокацией — перегибы на двойниковой границе и ее искажение, при этом общим здесь является однородность деформации по всему кристаллу во время скольжения или в двойниковой прослойке при двойниковании. Однако в деформированных кристаллах распределение дислокаций неравномерное, а возникающие дислокационные сетки и субграницы при избытке дислокаций одного знака приводят к микроскопической неоднородности, создавая локальную разориентировку, достигающую нескольких градусов. При простейших видах деформации (растяжение, сжатие) возникают значительные разориентировки. Для неоднородных и неравномерных полей напряжений и деформаций в макромасштабе (прокатка, кручение, изгиб, прессование и т. п.) появление существенной разориентировки неизбежно.  [c.148]

Структурный фактор обусловлен неоднородностью и неравномерностью распределения величины зерна или фаз, а также концентраторов напряжений и дефектов в объеме. Это в свою очередь оказывает влияние на неравномерность полей напряжений и деформаций по объему, причем чем больше размер тела, тем в большей степени выражена эта неравномерность. Поэтому чем неоднороднее среда, тем большее влияние оказывает объем на неравномерность распределения напряжений, снижая пластичность и напряжение течения.  [c.480]

Настоящая книга посвящена построению теории ползучести неоднородно-стареющих тел. Она состоит из шести глав. В гл. 1 приводится интегральная форма основных определяющих соотношений между напряжениями и деформациями, т. е. уравнений состояния дается постановка и формулируются условия, которые определяют решения краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, которые отражают наиболее характерные особенности деформирования стареющих материалов во времени. Доказывается ограниченность и асимптотическая устойчивость решения краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями.  [c.9]

Настоящая глава посвящена построению теории ползучести неоднородно-стареющих тел. Приводится интегральная форма линейных и нелинейных уравнений состояния, определяющих связь между напряжениями и деформациями. Дается постановка основных краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, отражающих наиболее характерные особенности деформирования стареющих материалов во времени. Устанавливаются достаточные условия ограниченности и асимптотической устойчивости решений краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями как внутри, так и на границе этих тел.  [c.12]

Основная задача нелинейной теории ползучести неоднородно-стареющих тел состоит в установлении определяющих уравнений, связывающих механические параметры состояния — напряжения и деформации. В этих уравнениях связь между деформациями ползучести и напряжениями будет нелинейной, что справедливо в широкой области изменения напряжений для многих стареющих материалов [98, 388].  [c.21]

Для повышения надежности работы нержавеющих экономнолегированных МСС и расщирения области их применения необходимо проведение исследований по установлению оптимальных сочетаний уровней эксплуатационных напряжений, условий эксплуатации (коррозионная среда) и микроструктуры с учетом концентрации напряжений в отдельных микрообъемах (границ зерен). В качестве важнейшего направления следует выделить разработку физико-механических моделей структурно-неоднородных напряжений и деформаций в отдельных микрообъемах с учетом геометрических факторов их концентрации для проведения модельных испытаний по оптимизации структуры и состава сталей.  [c.180]


Здесь и далее под структурным элементом будем понимать регулярный объем поликристаллического материала следующего масштабного и структурного уровня. С одной стороны, это — минимальный объем, который может быть наделен средними макроскопическими механическими свойствами материала, с другой — максимальный объем, для которого можно принять НДС однородным. Наконец, такой элемент определяется структурным уровнем, необходимым для анализа элементарного акта макроразрушения. Для рассматриваемых задач минимальный размер такого структурного элемента соответствует диаметру зерна поликристалла. Таким образом, поликристалличес-кий материал будем представлять как совокупность структурных элементов с однородными механическими свойствами и однородным НДС. Следует отметить, что такая схематизация наиболее наглядно работает при анализе процессов повреждения и разрушения в неоднородных полях напряжений и деформаций, например у вершины трещины целесообразность данного здесь определения структурного элемента будет показана ниже в настоящей главе, а также в главах 3 и 4.  [c.116]

Собственные ОН обусловлены развальцовкой одиночной трубки в коллекторе. В данном случае расчетный анализ НДС проводится в осесимметричной постановке посредством решения динамической (при взрывной развальцовке) или квазистатической (при гидровальцовке) упругопластической задачи. Анализ НДС одиночной трубки позволяет отразить неоднородность полей напряжений и деформаций по толщине коллектора.  [c.330]

При решении динамической упругопластической задачи возникает вопрос о пространственно-временной аппроксимации процесса взрывной запрессовки трубки в коллектор. На рис. 6.3 представлена схема расчетного узла ячейки коллектора для расчета собственных напряжений и деформаций. Здесь Явн — внутренний радиус трубки б — толщина трубки, S — толщина стенки коллектора а — ширина перемычки между отверстиями. Выбор величины радиуса Ян проводится посредством численных расчетов из условия инвариантности НДС от Rh при неизменных характере и уровне импульсной нагрузки при взрыве. Расчет НДС проводится в осесимметричной постановке и отражает ряд существенных особенностей процесса запрессовки трубки в коллектор. К ним относятся возможность учета сложного характера распределения во времени и пространстве давления на внутренней поверхности трубки, обусловленного неодновременной детонацией цилиндрического заряда. Кроме того, с помощью специальных КЭ достаточно хорошо моделируется условие контакта трубки с коллектором в процессе прохождения прямых и отраженных волн напряжений при динамическом нагружении. Учет указанных особенностей позволяет рассчитывать неоднородное поле напряжений и деформаций по высоте трубки (толщине коллектора) и, следовательно, достаточно надежно при учете общ.их, остаточных и эксплуатационных напряжений проанализировать НДС в зоне недовальцовки, в которой инициировались имеющиеся разрушения в коллекторе.  [c.334]

Можно отметить следующие особенности разрушений при статическом нагружении при одновременном действии механических нагрузок и рабочих сред. В условиях общей коррозии характер разрушений мало отличается от такового при статическом нагружении в нейтральной среде. В зависимости от качества металла и свойств коррозионной среда разрывы происходят по механизму вязкого или хрупкого разрушения. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что, несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразование) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой. В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва. Часто имеет ме-  [c.119]

Релаксационные явления объясняются неустойчивостью внутреннего напряженного состояния, обусловленного неоднородностью строения поликристаллического тела. В нем неизбежно находятся участки как упругонапряженные, так и пластически деформированные. Объемы, находяп1иеся в различных состояниях, неодинаково реагируют на внешние силовые воздействия, в результате чего и возникает процесс перераспределения напряжений и деформаций. Процесс выравнивания поля внутренних напряжений при обычных температурных условиях протекает крайне медленно. Процесс снятия внутренних напряжений можно значительно ускорить путем применения искусственных приемов, создающих в материале пластическую разрядку. Одним из них является наложение дополнительных напряжений. Однако, если металл или сплав обладает свойством упрочняться, а таких большинство, пол-ност1>ю освободиться от остаточных напряжений не удается наложением даже очень больших напряжении.  [c.44]

В этих уравнениях (i), вц (1) — девиаторы тензора напряжений и деформаций, Зе ( ) — объемная деформация, а ( ) — среднее напряжение в элементе с координатой х, О ( ) — упругомгновенный модуль сдвига, Е (t) — упругомгновенный модуль объемной деформации. Здесь и далее для сокращения письма явная зависимость напряжений и деформаций от аргумекта х иногда не указывается. Через Kl t, т) обозначено ядро сдвиговой деформации ползучести, (i, х) — ядро объемной деформации ползучести, X — радиус-вектор, р (х) — функция неоднородного старения, характеризующая закон изменения возраста элементов стареющего тела относительно элемента с координатами х = = 0,  [c.15]


При больпшх напряжениях соотношения между напряжениями и деформациями для таких материалов становятся нелинейными. В связи с этим возникает необходимость нелинейной теории ползучести неоднородно-стареющих тел.  [c.21]

В настоящей главе общие положения, дзложенные в гл. 1, используются при решении конкретных задач, связанных с учетом последовательности возведения и нагружения. Учет последовательности возведения в условиях ползучести приводит к необходимости использования введенной в гл. 1 модели неоднородно-стареющих тел. В реальных ситуациях наращивание конструкции (т. е. изменение ее границы) сопровождается также изменением в процессе наращивания приложенной к ней нагрузки. Получающееся при этом распределение поля напряжений и деформаций может существенно отличаться от напряженно-деформированного состояния конструкции в случае приложения нагрузок после завершения процесса возведения.  [c.78]


Смотреть страницы где упоминается термин Неоднородные напряжение и деформации : [c.418]    [c.103]    [c.92]    [c.385]   
Смотреть главы в:

Эластичные жидкости  -> Неоднородные напряжение и деформации



ПОИСК



597 — Деформации и напряжения

Деформация неоднородная

Напряжения и деформации, уравнения состояния, эйконал, упругие модули и скорости (МАКРО)НЕОДНОРОДНЫЕ ИЗОТРОПНЫЕ УПРУГИЕ СПЛОШНЫЕ СРЕДЫ

Неоднородность

Пористость, трещиноватость, проницаемость, глинистость, напряжения и деформации, замещение флюида, поровое давление и его оценка, диагенетический и седиментационный тренды (МАКРО)НЕОДНОРОДНЫЕ ИЗОТРОПНЫЕ УПРУГИЕ ДИСКРЕТНЫЕ СРЕДЫ



© 2025 Mash-xxl.info Реклама на сайте