Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение более жаропрочных сталей

ПРИМЕНЕНИЕ БОЛЕЕ ЖАРОПРОЧНЫХ СТАЛЕЙ  [c.313]

Необходимо отметить, что усложнение состава стали сопровождается снижением ее технологичности, поэтому применение более жаропрочных марок стали диктует необходимость совершенствования технологических процессов изготовления и обработки деталей и модернизации технологического оборудования заводов, в особенности термических цехов.  [c.26]

Заканчивая рассмотрение принципа действия ГТУ и проблемы экономичности таких установок в различных областях их применения, можно сказать следуюш ее. Принципиальные схемы ГТУ, в основном, созданы, и борьба ведется за достижение таких параметров их работы, которые обеспечивали бы высокую экономичность, большую удельную мош ность и надежность установок. Одна из важнейших задач в газотурбостроении — повышение экономичности установок. Экономичность ГТУ может быть увеличена повышением рабочей температуры и соответственно степени сжатия установки или использованием отработанного тепла путем регенерации тепла отходящих газов. Повышение рабочей температуры возможно благодаря применению все более и более жаропрочных сталей или введению охлаждения рабочих элементов турбины, главным образом, рабочих лопаток. Использование отработанного тепла позволяет создавать новые принципиальные схемы работы установок и добиваться значительного повышения экономичности при доступных уже теперь рабочих температурах, но требует включения теплообменников в схему работы установки это усложняет схему и увеличивает габариты газотурбинного двигателя.  [c.141]


Жаропрочная сталь по химическому составу является, кроме того, жаростойкой. Для последней цели жаропрочная сталь обычно используется в деталях, работающих при более высоких температурах, при которых она хотя и не сохраняет достаточного сопротивления ползучести, но обладает повышенной стойкостью против газовой коррозии. Поэтому в табл. 9 указываются также температуры начала интенсивного окисления в атмосфере воздуха, окисляющих печных и выхлопных газов, позволяющие характеризовать область применения соответствующей жаропрочной стали в качестве жаростойкой.  [c.415]

Кроме этих сталей более или менее широкого назначения, имеются аусте-нитные жаропрочные стали более узкого применения для литых деталей высокой окалиностойкости (детали печей, например реторты), листовой обшивочный материал, подвергаемый нагреву и т. д.  [c.473]

Основная сложность горячего прессования заключается в выборе материала пресс-формы, который должен иметь достаточную прочность при температурах прессования, не реагировать с прессуемым порошком, быть дешевым. При температурах прессования 500. .. 600 °С в качестве материала применяют жаропрочные стали на основе никеля, при температурах 800. .. 900 °С - твердые сплавы. В случае более высоких температур прессования (до 2500. .. 2600 °С) единственным материалом для пресс-форм служит фафит. Однако низкая производительность, малая стойкость пресс-форм (10. .. 12 прессовок), необходимость проведения процесса в среде защитных газов ограничивают применение горячего прессования и обусловливают его использование только в  [c.473]

Применение новых промышленных ускорителей электронов с энергией 1,5 МэВ и более и мощностью 50 кВт позволяет осуществлять наплавку углеродистых, легированных и жаропрочных сталей, серого чугуна и меди. Применяют наплавочные материалы в виде порошков никеля  [c.317]

Внедрение пара высоких и сверхвысоких параметров выдвинуло перед эксплуатационным, монтажным и ремонтным персоналом новые задачи. Повышение рабочей температуры деталей оборудования потребовало более широкого применения легированных жаропрочных и жаростойких сталей, а это усложнило  [c.5]

При обработке закаленных сталей, титановых сплавов, жаростойких и жаропрочных сталей инструмент быстро теряет свои режущие свойства. Применение рекомендуемых в табл. 12.7 СОЖ позволяет повысить период стойкости режущих инструментов в 2 раза и более при резании труднообрабатываемых материалов.  [c.376]


Аустенитные стали имеют низкую теплопроводность и высокий температурный коэффициент линейного расширения, что обусловливает перегрев металла в зоне сварки и возникновение значительных деформаций изделия. Основные трудности сварки рассматриваемых сталей и сплавов обусловлены высокой степенью легирования и разнообразием условий эксплуатации сварных конструкций. Основная особенность сварки таких сталей — склонность к образованию в шве и околошовной зоне горячих трещин в виде как мельчайших микротрещин, так и трещин значительных размеров. Образование горячих трещин связано с формированием при сварке крупнозернистой макроструктуры. Применение методов, способствующих измельчению кристаллов, повышает стойкость шва против образования горячих трещин. Эффективным средством является создание аустенитно-ферритной структуры металла щва. Получение аустенит-но-ферритных швов достигается путем дополнительного легирования металла шва хромом, кремнием, алюминием, молибденом и др. В сварных швах изделий, работающих как коррозионно-стой-кие при температуре до 400 °С, допускается содержание феррита до 25 %. В изделиях из жаропрочных и жаростойких сталей, работающих при более высоких температурах, содержание феррита ограничивают 4—5 %. Значительные скорости охлаждения при сварке и диффузионные процессы, происходящие при повышенных температурах в процессе эксплуатации, приводят к сильному охрупчиванию металла сварных соединений жаропрочных сталей и к потере прочности при высоких темпера-  [c.334]

Применение обычных конструкционных сталей в условиях значительной напряженности ограничено температурой 300—400° С. Жаропрочные стали и сплавы применяют при температурах до 700—800° С и выше. При еще более высоких температурах применяют металлокерамические и керамические материалы. Механические свойства некоторых материалов при повышенной температуре приведены в табл. 3.  [c.21]

При ковке дисков из высоколегированных жаропрочных сталей благоприятное изменение схемы напряженного состояния достигается применением горячих прокладок из мягкой листовой стали и спаренной осадкой заготовок. Основным условием принудительного течения металла вблизи контактов является более низкий предел текучести материала прокладки по сравнению с материалом заготовки при температуре ковки. Последнее достигается выбором материала прокладок, а также условиями их подогрева. Наиболее целесообразно производить нагрев прокладок совместно с заготовками и подавать их под пресс в виде стопы во избежание их быстрого остывания.  [c.516]

Успехи применения газотурбинных двигателей в авиации создали возможность использования их в качестве стационарных и транспортных установок, которые в отличие от авиационных должны работать более длительное время. Правда, достижения в создании подобных газотурбинных установок еще достаточно скромны. Дело в том, что жаропрочные стали дороги, а обычные непригодны для изготовления лопаток турбины, работающих при температурах выше 900° С без охлаждения. Рабочие температуры стационарных газотурбинных установок достигают пока лишь 600-700° С, а для транспортных машин — не выше 800-850° С при сроке службы до 5000 ч. Регенераторы не нашли еще себе конструктивного решения. Поэтому на стационарных установках удается пока получать коэффициент полезного действия 32 33%, на мощных транспортных установках — 18-25% и маломощных (меньше 500 л. с.) — 10-18%. Кроме того, газотурбинная установка, работая на режимах переменной мощности, имеет характеристику расхода-топлива менее благоприятную, чем поршневой двигатель внутреннего сгорания.  [c.386]

Наибольшее применение имеют сплавы на никелевой основе, которые по своим жаропрочным свойствам превосходят лучшие жаропрочные стали. Их рабочие температуры 800—1000 °С. Примерно такой же, а иногда и несколько более высокой жаропрочностью обладают сплавы на кобальтовой основе.  [c.110]


Влияние марки стали на срок службы паропроводов было выявлено по результатам оценки паркового ресурса стыковых сварных соединений паропроводов 219 х 32 и 273 х 32 мм для параметров пара температуры 560 °С и давлении 14 и 25,5 МПа. Расчет и оценку паркового ресурса проводили по методике, изложенной в 4.2. Из полученных результатов следует, что применение высоколегированных жаропрочных сталей по сравнению с теплоустойчивыми сталями 12Х1МФ и 15Х1М1Ф увеличивает в 5 -10 раз и более ресурс сварных соединений и соответственно паропроводов идентичного типоразмера труб (рис. 5.25).  [c.317]

Метчики применяют для нарезания внутренних резьб малых диаметров. Метчики изготовляют из инструментальных углеродистых и легированных сталей и обычно из быстрорежущих сталей Р18. Более высокие результаты при нарезании резьб в жаропрочных сплавах дает применение метчиков из стали Р9Ф5. По ГОСТ 7250-60 метчики выпускаются четырех классов точности. Метчиками класса С нарезают резьбу 1-го класса точности, классов Д и Е — 2-го класса точности и класса Н — 3-го класса точности.  [c.93]

Высоколегированная сталь аусте-нитного класса. Повышение температуры перегретого пара до 600—650° С потребовало применения еще более жаропрочных и окалиностойких сталей. Структурной основой таких сталей служит высоколегированный хромони-  [c.169]

В настоящее время не установлены единые нормы допустимых значений длительной пластичности для котельных сталей. Но при оценке служебных свойств новых марок жаропрочных сталей для котлов и паропроводов и в особенности при выборе оптимальных режимов термической обработки характеристикам длительной пластичности стали должно уделяться первоочередное внимание. В ряде случаев решение, обеспечивающее получение повышенной пластичности за счет некоторого снижения длительной прочности, является более выгодным для обеспечения надежности. При применении материалов с пониженными значениями длительной пластичности это должно учитываться в конструкции (исключение концентраторов напряжений, дополнительных из-гибных и циклических напряжений) кроме того, должны быть ужесточены требования к качеству изготовления (допуски на овальность гибов, раднусы переходов и т. п.).  [c.191]

До температуры 450 °С возможно применение углеродистых сталей до температуры 550°С — слаболегированных сталей перлитного класса более температуры 600°С — соответственно сталей ферр итно-м артенситного и аустенитного классов. Переход от сталей каждого из этих классов к более жаропрочным или жаростойким сталям следующих классов сопровождается повышением их стоимости в 2—5 раз.  [c.50]

Спекание пористых втулок не представляет технических трудностей и проводится в защитной атмосфере, содержание окислителей (HjO, Oj и др.) в которой должно быть минимальным, так как втулки могут окисляться при нагреве не только с поверхности, но и в объеме. Чаш,е применяют печи непрерывного действия - конвейерные и толкательные с защитной атмосферой, состоящей из водорода, диссоциированного аммиака, конвертированного или эндотермического газа. Рабочая температура спекания в таких печах до 1200 °С. Прессовки укладывают на поддоны из жаропрочной стали, которые продвигаются вдоль печи навстречу защитному газу. Находят применение 1акже камерные и шахтные печи. В этом случае заготовки укладывают в контейнер или специальный бак, изготовленные из жаропрочной стали. Сверху емкость закрывают плотно подогнанной крышкой, а внутрь ее вставляют газоподводящую и отводящую трубки. В последнее время разработан удобный метод спекания изделий в контейнерах из жаропрочной стали с плавким затвором (рис. 11) из нитро- или боросиликатного стекла для температур спекания 900-1200 °С и борного ангидрида для более низких температур спекания. Такие контейнеры позволяют спекать  [c.38]

Основные марки отечественных теплоустойчивых сталей и температурные границы их применения приведены в табл. 13. Эти стали находят свое основное применение в трубных системах и корпусах высокотемпературной части энергетических установок, технологических трубопроводах нефтехимических и химических аппаратов и в других установках с рабочей температурой до 540— 550° С для хромомолибденовых и до 570—580° С для хромомолибденованадиевых. В интервале рабочих температур 420—500° С предпочтительным является использование первой группы сталей как наиболее технологичных и более дешевых при более высоких температурах (500—570° С) хромомолибденованадиевые стали значительно более жаропрочны (рис. 15). Малоуглеродистые стали в качестве теплоустойчивых применяют для работы в интервале температур 350—450° С. Ранее используемые молибденовые стали, как например, сталь марки 15М, в послевоенное время были сняты с производства ввиду выявившейся склонности их сварных соединений к графитизации. Основной теплоустойчивой сталью, применяемой на нефтеперерабатывающих и нефтехимических заводах с рабочей температурой среды до 520° С, является сталь марки 12Х5М. Одновременно с теплоустойчивостью она обладает химической стойкостью в некоторых средах (нефти, содержащей серу) и стойкостью против воздействия водорода.  [c.169]

Твердые сплавы первой группы наиболее прочные, хорошо сопротивляются удар 1ым нагрузкам и используются для обработки чугунов, цветных металлов и их сплавов, неметаллических материалов. Твердые сплавы второй группы менее прочны, но более износостойки, чем сплавы первой группы. Они находят применение при обработке пластичных и вязких металлов и сплавов, углеродистых и легированных стале1й. Трехкарбидные твердые сплавы (третья группа) обладают повышенной прочностью, износостойкостью и вязкостью. Они применяются при обработке жаропрочных сталей, титановых сплавов и других труднообрабатываемых материалов.  [c.466]


Широко известные хромоникелевые аустенитные стали типа 18-8 являются не только коррозионностойким, но и жаропрочным, а также окалиностойким конструкционным материалом. Обычная сталь 1Х18Н10Т успешно используется в качестве жаропрочного материала, например, при температуре 600° С, сохраняя хорошую жаростойкость до 800—850° С. В табл. 1 приведены состав и области применения некоторых наиболее типичных жаропрочных хромоникелевых аустенитных сталей типа 18-8 или близких к этому типу сталей. Следует отметить, что в хромоникелевых жаропрочных сталях соотношение содержаний хрома и никеля обычно бывает более низким, чем в коррозионностойких сталях.  [c.8]

Очень большое влияние на свойства жаропрочных сталей и сплавов оказывают даже ничтожно малые количества легкоплавких примесей — олова, свинца, висмута, сурьмы, серы, фосфора и др., а также газов — кислорода, водорода. Сосредоточиваясь преимущественно на границах зерен у-твердого раствора, они резко снижают межкристаллическую прочность сплава, вызывая его преждевременное разрушение под действием температуры и нагрузки. Например, увеличение содержания сурьмы или свинца от 0,002 до 0,004% приводит более чем к двукратному падению жаропрочности никелевого сплава ЭИ437. Еще не так давно вопросы чистоты, касающиеся легкоплавких п 5имесей жаропрочных аустенитных сталей и сплавов, не привле-ка ли к себе внимания. Теперь однозначно установлено, что непременным условием получения стабильно высоких жаропрочных свойств является чистота шихтовых материалов и применение современных способов выплавки и обработки сталей и сплавов. На этом вопросе автор специально остановится в гл. VHI. Данные  [c.47]

За рубежом производство жаропрочных сталей и так называемых сверхсплавов ориентируется на вакуумно-дуговой переплав. В нашей стране качественная металлургия широко использует ЭШП, хотя находит применение и ВДП. В ряде стран проявляется большой интерес к советскому металлургическому процессу. Лицензии на ЭШП приобрели крупные французские и японские фирмы, занимающиеся производством жаропрочных и нержавеющих сталей и сплавов. Одной из этих фирм были проведены сравнительные исследования чистоты и механических свойств металла одной и той же плавки, подвергшегося ВДП и ЭШП. Объектом исследования служила дисковая аустенитная сталь типа Х16Н26М2Т2. Эти исследования показали, что оба способа переплава дали идентичные результаты, если не считать загрязненности металла сульфидами, значительно более низкой при ЭШП.  [c.403]

Из рис. 175 видно, что хромоникельазотистые стали типа 23-4 при высоких температурах имеют более высокие механические свойства, чем стали типа 18-8. Это представляет большой интерес с точки зрения применения этих сталей в качестве более жаропрочного материала.  [c.324]

Более технологичной является сталь 20ХМФЛ. По сравнению с ней сталь 15Х1М1ФЛ, получившая наиболее широкое применение в теплоэнергетике, отличается более высоким содержанием Сг, Мо и V, что характеризует эту сталь как более жаропрочную и менее технологичную.  [c.31]

Высоколегированная сталь аусте-нитного класса. Повышение температуры перегретого пара до 600— 650 °С потребовало применения еще более жаропрочных и окалиностойких сталей. Структурной основой таких сталей служит высоколегированный хромоникелевый или хро-моникелемарганцевый аустенит. Повышению устойчивости аустенита способствуют главным образом никель и марганец. Высокое содержание хрома в аустенитной стали делает ее более высокоокалиностойкой. В отличие от низколегированной стали, в которой суммарная масса легирующих до-бавок не превышает 4 —5%, в высоколегированной аустенитной стали добавка только никеля и хрома достигает 30% и более общей массы металла, однако стоимость ее в несколько раз выше. 252  [c.252]


Смотреть страницы где упоминается термин Применение более жаропрочных сталей : [c.49]    [c.322]    [c.4]    [c.328]    [c.127]    [c.114]    [c.266]    [c.294]    [c.33]    [c.185]    [c.177]    [c.43]    [c.28]   
Смотреть главы в:

Ресурс сварных соединений паропроводов  -> Применение более жаропрочных сталей



ПОИСК



Жаропрочность

Жаропрочность сталей

Жаропрочные КЭП

МН (от 100 до 1000 тс и более)

Применение жаропрочных сталей

Сталь Применение

Сталь жаропрочная

Сталя жаропрочные



© 2025 Mash-xxl.info Реклама на сайте