Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тугоплавкие гафния

Следовательно, к тугоплавким должны быть отнесены следующие металлы ванадий (/пл—1900°С), вольфрам (3410°С), гафний (1975°С), молибден (2610°С), ниобии (2415°С), рений (3180°С), тантал (2996°С), технеций (2700°С), титан (1672°С), хром (1875°С), цирконий (1855°С). Все эти элементы расположены в одном месте периодической системы элементов и относятся к металлам переходных групп (см. табл. 2).  [c.521]

Изделия из алюминия и его сплавов паяют с припоями на алюминиевой основе с кремнием, медью, оловом и другими металлами. Магний и его сплавы паяют припоями на основе магния с добавками алюминия, меди, марганца и цинка. Изделия из коррозионно-стойких сталей и жаропрочных сплавов, работающих при высоких температурах (выше 500 °С), паяют тугоплавкими припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.  [c.240]


Основу керметов составляют химические соединения. Среди них находятся вещества с особо высокой температурой плавления Это, например, карбид ниобия (1т=3770 °С), карбид циркония (3800 С), карбид тантала (4150 °С) и самое тугоплавкое вещество карбид гафния(4200 С).  [c.139]

IV V VI VII 1 Титан, цирконий, (гафний) Ванадий, ниобий, тантал Молибден, вольфрам (Рений) Тугоплавкие  [c.446]

Следовательно, к тугоплавким металлам должны быть отнесены титан (1672 С), цирконий (1855° С), гафний (1975° С), ванадий (1900° С), ниобий (2415 С), тантал (2996° С),хром (1875° С),молибден (2610°С), вольфрам (3410°С), технеций (2700°С),рений (3180°С).  [c.3]

В настояш,ее время известны способы сохранения высокотемпературной прочности и сопротивления ползучести. К таким способам относятся дисперсное упрочнение металлической матрицы тугоплавкими кислородными и бескислородными дисперсными частицами [52]. Сравнительно недавно созданы вольфрамовые сплавы W—Hf—С и W—Hf—Re—С для получения волокон (проволоки) для армирования никелевых матриц [95]. Упрочняющей фазой в волокнах из вольфрамового сплава является карбид гафния. Подобное упрочнение дисперсными частицами может быть осуществлено и на других металлах.  [c.42]

Методом порошковой металлургии изготовляют различные детали из тугоплавких металлов вольфрама, тантала, ниобия и молибдена с температурой плавления выше 2000°. Что касается изделий из тугоплавких карбидов, боридов, нитридов, то они могут быть получены только методами порошковой металлургии. Температура спекания изделий из тугоплавких карбидов титана, циркония, гафния превышает 2000°, достигая 2500—2700° для карбидов нио бия и тантала.  [c.74]

В природе встречается в распыленном состоянии вместе с цирконием. Высокая эмиссионная способность гафния позволяет использовать его в электро-, радио- и рентгенотехнике. Двуокись гафния обладает высокой тугоплавкостью и используется в огнеупорах, тугоплавких тиглях, плавильных печах и т. п.  [c.378]

Графит удовлетворительно смачивается тугоплавкими металлами (титан, цирконий, кремний, гафний, ванадий, ниобий, вольфрам, молибден), металлами группы железа, алюминием, а также кремнием и бором.  [c.276]

Тугоплавкие металлы относят к переходным элементам IV - VII групп Периодической системы Д.И.Менделеева, у которых при переходе от одного элемента к соседнему происходит достройка внутренних электронных уровней (так называемых d-уровней). Такими металлами являются титан, цирконий, гафний (IV группа), ванадий, ниобий, тантал (V группа), молибден, вольфрам (VI группа) и рений (VII группа). Эта  [c.150]


Электроннолучевая плавка с успехом применяется для получения слитков стали и тугоплавких металлов высокой степени чистоты. При переплаве вольфрама, ниобия, тантала, молибдена получают содержание углерода, азота, кислорода, менее тысячной доли процента. Благодаря повышению степени чистоты повышается пластичность тугоплавких металлов. Переплав гафния и циркония позволяет значительно уменьшить содержание углерода, водорода, азота, повысить антикоррозионные свойства этих металлов, значительно уменьшить содер-  [c.204]

Сплавы В-88 и С-1 принадлежат к числу наиболее прочных ниобиевых сплавов (рис. 19.7). Твердорастворное упрочнение сплава С-103 (см. табл. 19.5), очевидно, в сильной степени зависит от содержания гафния, а дисперсное упрочнение - от содержания комплексных карбидов типа МеС. По-. крытие у него "на собственный манер", но оно работает. Таким образом, система сплава С-103 с покрытием — первая, положившая начало применению тугоплавких металлов в авиационных двигателях. Этот сплав применяют и в двигателях ракет, когда требуется умеренная прочность в диапазоне, 1093-1370 °С.  [c.311]

Число металлов и сплавов, используемых в сварных конструкциях, непрерывно возрастает, так как этого требует развитие науки и техники. Цветные металлы и сплавы находят широкое применение в авиастроении, ракетной и космической технике, энергетическом, атомном, химическом машиностроении, приборостроении и других отраслях. В качестве конструкционных материалов наиболее широко используются алюминий, магний, титан, медь, никель, молибден, ниобий, тантал, цирконий, гафний и сплавы на их основе. Цветные металлы и сплавы можно условно разделить на легкие (А1, Mg, Be), тяжелые (Си, Ni) и химически активные и тугоплавкие (Ti, Мо, Nb, Zr, Та).  [c.435]

Рассмотрим только те тугоплавкие и химически активные металлы, которые могут быть использованы в качестве конструкционных материалов цирконий, гафний, ниобий, тантал, молибден. Такие материалы, как ванадий, вольфрам, хром, используют в качестве конструкционных значительно реже и только в комбинированных сварных соединениях.  [c.478]

Высокая тугоплавкость. Температура плавления Zr , Hf , Nb , ТаС выше, чем у вольфрама. По тугоплавкости карбиды гафния и тантала превосходят все известные синтезированные вещества.  [c.225]

Для повышения длительной прочности на поверхность проволоки наносят методом напыления тонкие (4 - 12 мкм) барьерные покрытия, например, из карбидов титана и гафния, оксидов алюминия и гафния. Это увеличивает рабочие температуры и срок службы жаропрочных сплавов. Недостатком наполнителя из тугоплавких металлов является их высокая плотность.  [c.450]

Для изготовления электродов электроду-говых плазмотронов применяют тугоплавкие металлы, такие как вольфрам, молибден, цирконий, гафний или специальные сплавы. Ресурс работы вольфрамового катода при токах до 1000 А составляет несколько сотен часов и определяется в основном природой плазмообразующего газа. Катоды выполняются из циркония или гафния, наиболее устойчивых материалов при работе дуговых плазмотронов в окислительных средах. На поверхности этих материалов образуется оксидная пленка, с одной стороны, хорошо проводящая электрический ток при высоких температурах, а с другой, - предохраняющая металл от дальнейшего быстрого окисления.  [c.443]

Если теплоты испарения не превышают 8,8 эВ (W), а теплоты плавления — 0,36 эВ (W), то теплоты полиморфных превращений плотных модификаций в ОЦК не превышают 0,052 эВ (Y). Теплоты плавления в 20—30 раз меньше теплот атомизации, а теплоты превращения еще на 2—3 порядка меньше. В то же время потенциалы ионизации, отвечающие отрыву валентных электронов, уже для щелочных металлов (I гр.) составляют 4—5 эВ и быстро возрастают при переходе к многовалентным тугоплавким металлам (табл. 2). Суммарная энергия ионизации двух валентных электронов у железа, кобальта и никеля составляет около 25 эВ, металлов IV группы — (титан, цирконий, гафний) 70—90 эВ, металлов V группы (ванадий, ниобий, тантал) 124—164 эВ и металлов VI группы (хром, молибден, вольфрам) — 200—267 эВ.  [c.51]


Столь же фундаментальную роль играет а jri р превращение в таких тугоплавких металлах, как титан, цирконий и гафний. Термическая обработка их сплавов, приводящая к фазовым превращениям высокотемпературного ОЦК Р-твердого раствора в мартен-  [c.64]

Теплоты образования нитридов зависят от номера группы таким же образом (см. рис. 44). Максимальной термодинамической прочностью с ладают мононитриды титана, циркония и гафния. При переходе к нитридам редкоземельных, щелочноземельных и щелочных металлов теплоты образования сильно снижаются. Такое же резкое падение происходит при переходе к нитридам металлов V—VI групп и далее к метастабильным, взрывающимся нитридам меди. Для дисперсионного упрочнения тугоплавких металлов V—VI групп особенно перспективны нитриды гафния, циркония и в меньшей степени титана. Наличие в них одного избыточного электрона усиливает их прочность за счет дополнительных связей Me—Me. Определенное значение в качестве упрочняющих фаз в жаропрочных сталях и никелевых сплавов могут иметь нитриды ванадия, ниобия, тантала и в меньшей степени нитриды редкоземельных металлов.  [c.117]

Судя по теплотам образования для дисперсионного упрочнения тугоплавких металлов V—VI групп наиболее перспективны карбиды и нитриды гафния, циркония и титана. Для дисперсионного упрочнения сталей и никелевых сплавов наиболее эффективны растворяющиеся в достаточной степени при 1000—1200° С карбиды ванадия, молибдена и вольфрама.  [c.117]

Исходя из представлений о взаимосвязи упрочняющего действия легирующего элемента в твердом растворе и влияния его на ход линии солидуса в соответствующей диаграмме состояния, можно прийти к выводу, что такие элементы, как цирконий и гафний, должны приводить к разупрочнению ниобия в случае образования твердых растворов. Действительно, присутствие в сплаве ниобий— гафний—азот избытка гафния по отношению к стехиометрическому соотношению приводит к значительному снижению кратковременной прочности при низких температурах [145] и особенно при 1200° С [141]. Так, сплав ниобий — 10 мас.% гафния — 0,187 мае. % азота, содержащий в два раза больше азота, чем сплав ниобий— 1,69% гафния — 0,098% азота, после одинаковой термической обработки имеет при 1200° С предел прочности Ов = 7,3 кгс/мм , что почти в четыре раза меньше, чем предел прочности сплава с 1,69% гафния. Такое разупрочняющее влияние на ниобий оказывает менее тугоплавкий гафний при высоких температурах, когда отрицательно влияет приближение к линии солидуса. Таким образом, как уже было показано, при подборе оптимальных составов сплавов необходимо не вводить гафнии (и тем более цирконий в сплавах с цирконием) намного больше стехиометрического соотношения ат. %Meiv ат. % N = 1 1.  [c.240]

Более того, тугоплавкие металлы, расположенные на границе области тугоплавких в периодической системе элементов, а именно титан, цирконий, гафний, технеций и рений, уже несколько отличаются от пшичных  [c.3]

К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспозиции в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е прн наличии на поверхности отложений.  [c.160]

Наибольшее распространение в технике получили дибориды — МеВа. В табл. 1 приведены важнейшие физические свойства диборидов тугоплавких металлов — титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена и вольфрама [8, 10, И, 26].  [c.410]

К этому же направлению примыкают исследования кафедры в области катодных материалов (доц. В. Я. Шлюко, В. В. Морозов). Проведенные исследования по легированию гексаборида лантана тугоплавкими переходными металлами (В. П. Бондаренко) показали, что наибольшее влияние оказывают гафний и вольфрам.  [c.81]

Перечень исходных материалов, которые были использованы для создания автоэлектронных катодов, достаточно широк. Это, в первую очередь, тугоплавкие металлы вольфрам, молибден, рений, платина. Также широко исследовались автоэмиссионные свойства металлов переходных групп, таких, как хром, ниобий, гафний. Бесчисленное множество публикаций посвящено автоэмиссии и автокатодам из полупроводниковых материалов. Однако автокатоды из таких материалов не могут длительное время работать в условиях серийных приборов (р 10 -ь 10 мм рт. ст.) т. к. происходит разрушение микро-вытупов, определяющих автоэмиссию с рабочей поверхности катода.  [c.6]

Использование в качестве упрочняктщих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), нерастворяю-щихся в матричном металле, позволяет сохранить высокую прочность материала до 0,9—0,95 Т л- В связи с этим такие материалы чаще применяют как жаропрочные. Днснерсио-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.  [c.426]

Вследствие чрезвычайно высокой температуры плавлении тантала и его высокой реакционной способности при нагревании для превращепия металла в компактную форму приходится использовать специальные методы. Эти методы в общем подобны применяемым для других тугоплавких и реакционноспособных металлов - ниобия, гафния, молибдена, титана, вольфрама и циркония. В промышленных масштабах применяют.спекание, дуговую плавку в вакууме или в интертной атмосфере и электронно-лучевую плавку.  [c.688]


Винтер [147] запатентовал метод получения таких тугоплавких металлов в реакторе, как титап или цирконий, восстановлением летучих галоидных соединений этих металлов металлом-восстановителем, особенно магнием. Он также сделал заявку на -оригинальный метод производства ниобия, гафния, молибдена, тантала и вольфрама с применением в качестве восстановителей кальция, бария, стронция, натрия, калия и лития.  [c.935]

Судя по литературным данным [80], на окисление никелевых и кобальтовых сплавов тугоплавкие элементы оказывают влияние трех видов. Влияние одного из них благотворно, поскольку тугоплавкие элементы можно рассматривать как ловушки (геттеры) для кислорода, способствующие образованию защитных слоев из Al Oj и r Oj. Влияние двух других видов — вредное. Во-первых, тугоплавкие элементы уменьшают диффузионную активность алюминия, хрома и кремния, а это противодействует формированию защитного слоя. Во-вторых, оксиды тугоплавких металлов обычно незащитны (т.е. отличаются низкой температурой плавления, высокой упругостью паров, высоким коэффициентом диффузии и другими неблагоприятными характеристиками), и поэтому они нежелательны в качестве компонентов для наружной окалины. Следовательно, вредное влияние тугоплавких элементов оказывается более весомым, чем их благотворное влияние, так что для повьш1ения противоокислительной стойкости их обычно в суперсплавы не вводят. Но поскольку тугоплавкие элементы не равнозначны, то некоторые из них использовать предпочтительнее, чем другие. Представляется, например, что тантал, не вызывает столь вредных последствий, как вольфрам или молибден, поэтому он один из тех тугоплавких элементов, которые следует предпочесть. Вольфрам, молибден и ванадий ведут себя примерно одинаково, но вольфрам определенно сильнее снижает. скорости обменной диффузии, чем остальные элементы, и, следовательно, более, чем другие способен к неблагоприятному влиянию в отношении избирательного окисления. Оксиды ниобия не являются защитными, поэтому его присутствие в составе окалины нежелательно. Рений применяли в суперсплавах в ограниченных масштабах его влияние, по-видимому, аналогично влиянию ниобия. Гафний и цирконий часто вводят в суперсплавы в небольших количествах, они значительно улучшают прочность связи окалины с основным сплавом.  [c.32]

Большинство ниобиевых сплавов (табл. 19.5) отличается хорошей деформируемостью, свариваемостью и неплохой прочностью. На сегодняшний день упрочняющее легирование ниобия осуществляется простым упрочнением твердого раствора тугоплавкими элементами с высокими модулями упругости и дисперсного упрочнения карбидами типа МеС. Для образования твердых растворов замещейия, отличающихся повышенным сопротивлением ползучести, чаще всего вводят вольфрам, молибден и тантал. Элементы с высокой реакционной способностью, цирконий и гафний, взаимодействуя с углеродом и азотом, образуют очень мелкие выделения, еще более повышающие сопро1ивление ползучести. Алюминий и титан повышают стойкость основного металла против окисления однако они понижают температуру плавления и поэтому отрицательно сказываются на прочности. Сплавы выплавляют электроннолучевым способом или в вакуумной печи с двумя расходуемыми электродами и с последующей обработкой давлением. Литейные ниобиевые сплавы не известны.  [c.310]

Использование в качестве упрочняющих частиц стабильных тугоплавких соединений (оксидов тория, гафния, итгрия, сложные соединения оксидов и редкоземельных металлов), не растворяющихся в матричном металле, позволяет сохранить высокую прочность материала до 0,9...0,95 Т .  [c.234]

В зависимости от способа плазменно-дуговой резки в качестве электродов применяют вольфрамовый лантанированный стержень (при использовании в качестве рабочего газа аргона, азота, водорода) или медный водоохлаждаемый электрод с циркониевой или гафниевой вставкой (при использовании окислительных сред - воздуха, обогащенного воздуха, кислорода). Цирконий и гафний при воздействии высокой температуры дугового разряда образуют на поверхности тугоплавкую оксидную пленку, в дальнейшем предохраняющую электрод от эрозии в процессе резки. Однако стойкость этих электродов ввиду воздействия крайне высоких температур невысока, и время их работы не превышает, как правило, 2. .. 4 ч.  [c.238]

Тугоплавкие металлы и сплавы. Тугоплавкими называют металлы, температура плавления которых выше 1700 С. Наиболее тугоплавки вольфрам (3410 С), молибден (2620°С), тантал (2996°С), хром (1875Х), рутений, гафний и др. Тугоплавкие металлы и их сплавы широко применяют как жаропрочные при строительстве ракет, космических кораблей. Эти металлы получают из порошков путем прессования и последующего их спекания в брикеты, а также плавкой заготовок в электроду-  [c.223]

В работе Г. С. Бурханова рассмотрены свойства и перспективы применения в конструкциях карбидов и боридов редких металлов, в том числе в виде направленно закристаллизованных тугоплавких эвтектик. Среди офомного числа металлоподобных соединений редких металлов заметное место занимают карбиды и бориды. Они могут использоваться или как основа конструкционного материала, или как упрочняющий компонент в сочетании с пластичной матрицей. Такие конструкционные материалы могут предназначаться для работы в экстремальных условиях. Особый интерес представляют монокарбиды и дибориды переходных металлов IV—VI фупп периодической системы Д. И. Менделеева - циркония, гафния, ниобия, тантала, молибдена, вольфрама. Карбиды и бориды переходных металлов IV—VI фупп имеют четко выраженный металлический характер металлический блеск, хорошую электро- и теплопроводность, что указывает на преобладание металлического типа химической связи.  [c.225]

Среди наиболее тугоплавких металлов особенно перспективен для разработки жаропрочных сплавов ниобий, отличающийся высокой пластичностью, относительно малой окисляемостью и другими полезными характеристиками. На основе новых теоретических и экспериментальных данных выявлена возможность эффективного упрочнения ниобия и его сплавов дисперсными частицами карбидов, нитридов и окислов циркония и гафния. Закономерности образования и распада пересыщенных твердых растворов в двухфазных нио-биевых сплавах являются типичными для классических стареющих сплавов. В связи с этим большое значение имеет возможность регулирования структуры и свойств этих сплавов путем термической обработки. Сочетание оптимального количества упрочняющей дисперсной фазы и рационального режима термической обработки позволяет значительно повысить жаропрочные свойства современных ниобиевых сплавов.  [c.5]

Для дисперсионного упрочнения тугоплавких металлов IV—VI групп перспективны наиболее термодинамически стабильные нитриды титана, циркония, гафния, тория и отчасти тантала. Для жаропрочных сталей и никелевйх сплавов они слишком устойчивы. Диссоциируют При нагревах до 1000—1100° С нитриды ванадия, жиобия и металлов VI группы, которые находят применение для упрочнения сплавов на основе железа и никеля.  [c.106]

Отсюда следует, что наиболее эффективно дисперсионное упрочнение металлов IV—VI групп тугоплавкими карбидами, нитридами, окислами и боридами титана, циркония, гафния и тория, полностью диссоциирующими в расплавах и имеющими определенную растворимость в твердых металлах, уменьшающуюся с понижением температуры.  [c.114]


Смотреть страницы где упоминается термин Тугоплавкие гафния : [c.132]    [c.7]    [c.59]    [c.36]    [c.728]    [c.371]    [c.364]    [c.38]    [c.84]    [c.108]   
Морская коррозия (1983) -- [ c.162 ]



ПОИСК



Гафний



© 2025 Mash-xxl.info Реклама на сайте