Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы теории энергетических зон кристаллов

ОСНОВЫ ТЕОРИИ ЭНЕРГЕТИЧЕСКИХ ЗОН КРИСТАЛЛОВ  [c.55]

Дополнительные разрешенные частоты при определенных условиях могут возникать и в интервале между оптическими и акустическими ветвями колебаний. Интересно отметить, что поскольку теория колебаний атомов и теория электронных состояний в кристаллах имеют общую математическую основу, то по аналогии с локальными модами колебаний появление дефектов может приводить и к разрешенным энергетическим (локальным) состояниям электронов в области энергетической щели. Подобные состояния, действительно, обнаружены и имеют большое значение, например, в физике полупроводников.  [c.220]


Проникновение в микромир, познание его законов показали необычайную мощь фундаментальной науки, как основы принципиально новых производств. Открытие материальных носителей электричества — электронов и закономерностей их движения в вакууме, в твердом теле положило начало новой области науки — электронике. Только благодаря успехам электроники удалось создать радиолокацию, радиотехнику сверхвысоких частот, электронно-вычислительные машины, электронную биомедицинскую аппаратуру, электронные микроскопы и многое другое. Открытие возможности управления электрическими свойствами полупроводниковых и диэлектрических кристаллов ряда веществ, глубокие познания законов и механизмов электропроводности, поляризация твердого вещества вызвали новую революцию в радиотехнике, электронике и вычислительной технике. Электронные вакуумные лампы заменяются ничтожными по размерам кристаллами. Компактные полупроводниковые силовые вентили высокой надежности с успехом заменяют сложные установки в энергетических устройствах. Прочно вошли в практику транзисторные радиоприемники. Недавно открытое явление сверхпроводимости второго рода дало возможность приступить к изготовлению мощных электромагнитов. На основе квантовой теории созданы квантовые генераторы света и радиоволн (лазеры и мазеры), открывающие огромные перспективы для различных областей техники. Наиболее значительным достижением абстрактной науки о ядерных реакциях стало производство атомной энергии.  [c.31]

Полупроводники качественно отличаются от металлов природой химических связей, структурой и физико-механическими свойствами. От диэлектриков полупроводники отличаются лишь количественно. Полупроводники — это вещества, имеющие при нормальной температуре удельную проводимость в интервале 10" —10 Ом" м , которая зависит от вида и количества примесей, структуры вещества и внешних условий температуры, давления, электрических и магнитных полей, освещения, облучения ядерными частицами. В соответствии с зонной теорией у металлов валентные электроны легко переходят на уровни зоны проводимости и все валентные электроны участвуют в создании тока. У полупроводника энергетическая зона валентных электронов занята полностью и отделена от зоны проводимости зоной запрещенных энергий. К полупроводникам относятся вещества, для которых запрещенная зона равна (0,16- -5,1) 10" Дж. Вещества с большей шириной запрещенной зоны относятся к диэлектрикам. Основу полупроводникового прибора составляет кристалл полупроводникового материала с одним пли несколькими электронно-дырочными р—м-переходами, которые получают,, вводя разнообразные примеси в различные участки одного и того же кристалла.  [c.230]


Кристаллические структуры твердых тел обусловлены межатомными связями, возникающими в результате взаимодействия электронов с атомными остовами. Вывод металлических структур — ОЦК, ГЦК и ПГ — из электронного строения атомов представляет кардинальную проблему физики металлов [1, 21. В основе квантовой теории металлов лежит теория энергетических зон [3 —11]. Она рассматривает поведение электронов в периодическом поле решетки. Кристаллическая структура определяется дифракционными методами и вводится в зонную модель априори как экспериментальный факт, без объяснения ее происхождения. Разрывы непрерывности энергий электронов приводят к образованию зон Бриллюэна, ограниченных многогранниками, форма которых зависит от симметрии кристалла. Характер заполнения зон и вид поверхности Ферми различны для металлов, полупроводников и изоляторов. Расчеты позволяют получить з нергетическую модель, количественно описывающую энергетическое состояние электронов и физические свойства твердых тел. Однако из зонной модели нельзя вывести кристаллическую структуру, поскольку она вводится в основу построения зон как экспериментальный факт. Расчеты зонных структур и физических свойств металлов получили широкое развитие благодаря теории псевдопотенциала 112—19]. Они позволяют оценить стабильность структур металлов, но не вскрывают физическую природу конкретной геометрии решетки.  [c.7]

Первые попытки применения квантово-механической теории энергетического состояния электронов в диэлектриках и полупроводниках к интерпретации фотохимических и фотоэлектрических явлений в щелочно-галоидных кристаллах принадлежат П. С. Тар-таковскому [71]. На основе имевшихся в то время экспериментальных данных и общих соображений об энергетических уровнях в кристаллах Тартаковским впервые была построена схема энергетических уровней для ряда щелочно-галоидных соединений с учетом локальных электронных состояний различных центров окраски. Анализируя электронные переходы между различными уровнями энергии кристалла, можно было объяснить ряд оптических и фотоэлектрических свойств окрашенных кристаллов ще-лочно-галоидных соединений с единой точки зрения. Однако в отличие от полупроводников, для которых свет в области их фундаментального поглощения является фотоэлектрически активным, в щелочно-галоидных кристаллах не наблюдается внутреннего фотоэффекта под действием света в области первой полосы собственного поглощения. По этой причине попытки применения зонной теории к толкованию всей совокупности явлений, связанных с собственным поглощением, фотопроводимостью и люминесценцией щелочно-галоидных кристаллов наталкивались на существенные затруднения. Некоторые фундаментальные экспериментальные факты относительно свойств окрашенных щелочно-галоидных кристаллов не получили объяснения ни в энергетической схеме Тарта-ковского, ни в подобных более всеобъемлющих схемах, предлагавшихся позднее. В частности, оставалась совершенно непонятной сама возможность образования в кристалле столь устойчивой окраски под действием света или рентгеновых лучей, какая в действительности наблюдается у щелочно-галоидных кристаллов. В самом деле, при образовании в процессе фотохимического окрашивания свободных электронов, локализующихся затем на уровнях захвата, в верхней зоне заполненных уровней энергии должны образоваться свободные положительные дырки. Вследствие диффузии этих дырок в верхней зоне заполненных уровней вероятность их рекомбинации с электронами, локализованными в центрах окраски, должна быть достаточной, чтобы кристалл быстро обесцветился даже в темноте. Между тем, известно, что окраска кристалла весьма устойчива и сохраняется в темноте очень продолжительное время. Возможность локализации положительных дырок в предлагавшихся квантово-механических моделях не рассматривалась.  [c.30]

Мы выяснили, что существование энергетических зон — важнейшая особенность энергетического спектра электронов в кристалле. Построение энергетических зон — сложная задача теории твердого тела и, например, изложение методов построения зон выходит за рамки данного курса. Полезно дать предсгавление о виде энергетических зон и связанных с ними ферми-поверхностей в простом приближении. В качестве такого мы выбрали модель пустой решетки, т. е. решетки, характеризующейся исчезающе малым по величине периодическим потенциалом. Ввиду предельной слабости потенциала энергетические зоны пустой решетки строятся на основе приближения свободных электронов.  [c.83]


Этими двумя приближениями будут модель еаза свободных электронов и зонная модель почти свободных электронов. Первая модель позволит нам с помощью статистики Ферми вычислить основные величины, характеризующие электроны проводимости (например, теплоемкость или плотность состояний) на ее основе нам будет легко понять смысл тех модификаций, к которым приводит использование более реалистичных приближений. Из второй модели мы увидим, что спектр разрешенных состояний не является непрерывным, а существуют запрещенные энергетические зоны. Это приводит к понятию зонной структуры, весьма важной для детального понимания теории металлов. Кроме этих моделей, мы кратко опишем еще два приблингения (будут указаны лишь физические допущения, лежащие в их основе) метод ячеек и метод ортогонализованных плоских волн. Эти последние методы включены потому, что они позволяют точнее рассчитывать более тонкие свойства кристаллической решетки — соответственно сжимаемость и детали зонной структуры данного кристалла.  [c.67]

Идея об автолокализации электронов легла в основу работ С. И. Пекара по теории поляронов и центров окраски в щелочно-галоидных кристаллах. Полярон представляет собой электрон, локализованный в созданной им самим поляризационной яме. Локализуясь в области вакантного узла отрицательного иона, он образует элементарный центр окраски. Метод эффективной массы, теоретически обоснованный Пекаром, позволил рассмотреть количественно энергетические состояния электронов в области дефектов кристаллической структуры в виде пустых анионных узлов и разработать количественную теорию центров окраски, вычислить кривую / -полосы поглощения и ее зависимость от температуры кристалла. Этот метод позволил также определить форму полосы поглощения, обусловленной /- -центрами, на основе модели, согласно которой F -центр представляет собой элементарный центр окраски, захвативший еще один электрон.  [c.45]

Введение. В глаье 1 мы видели, что при понижении температуры удельная теплоёмкость почти всех простых твёрдых тел монотонно убывает, стремясь к нулю при приближении температуры к абсолютному нулю. Классическая теория не объясняла этот факт сколько-нибудь удовлетворительно. Качественное объяснение его Эйнштейном ) на основе квантовой теории явилось одним из первых успехов этой теории. Эйнштейн считал (что делалось и до него), что простой кристалл может рассматриваться как совокупность атомных осцилляторов эти осцилляторы колеблются с одной и той же собственной частотой. Кроме того, он предположил, что разрешённые энергетические уровни этих осцилляторов являются целыми кратными Ау, где V — частота колебаний, а А — постоянная Планка. В классической механике энергетический спектр принимался непрерывным, что вместе с классической статистической механикой приводило при всех температурах к закону Дюлонга и Пти. Применяя теорему Больцмана к постулированной совокупности квантовых осцилляторов, Эйнштейн нашёл, что качественно можно объяснить наблюдаемое спадание удельной теплоёмкости.  [c.113]

Главы 1 и 2 об анализе структуры кристаллов относятся к числу фундаментальных. Каждое понятие или положение, изложенное в главе 2, существенно используется в главах о зонной энергетической структуре и полупроводни-ка,. Особенно это относится к понятию обратной решетки и зонам Бриллюэна. Общий метод, развитый в [ риложении А для дифракции рентгеновских лучей, также излол<ен в главе 9 в качестве основы для построения теории злектронных энергетических зон. Главу 4 при первом чтении можно опустить. В главах 4 и 5 рассмотрены скорость, квантование и взаимодействие упругих волн в кристаллах к числу вопросов, затронутых в этих главах и используемых позднее, относится определение числа состояний в зоне Бриллюэна и числа состояний на единичный энергетический интервал.  [c.13]

Мы видим, что магнитоупругая энергия обязана своим сун1е-ствованием магнитострикции так же как и энергия естественной магнитной анизотропии, она зависит от направления вектора намагниченности в кристалле и создает дополнительные выгодные Энергетические направления 4 областей в решетке (магнитоупругая анизотропия). Таким образом, изменения намагниченности под влиянием упругих деформаций в области смещения и вращения должны быть объяснены тем, что действующие на ферромагнетик упругие напряжения приводят к изменению ориентаций областей в решетке (без изменения абсолютной величины 4). Акулов [1] показал, что эти явления, так же как и магнитострикция в области технического намагничения, определяются магнитными силами взаимодействия атомов в решетке. Разработанная им теория послужила основой для объяснения разнообразных магнитоупругих явлений, протекающих в этой области. Благодаря многочисленным экспериментальным и теоретическим исследованиям, проводившимся в течение длительного времени, магнитоупругие эффекты, наблюдаемые в области смещения и вра-1цения, в настоящее время являются достаточно хорошо изученными.  [c.99]

В основе модели РФЛВ лежат представления теории кристаллического поля (ТКП), предполагающей эквивалентность спектроскопических единиц, описывающих электронные термы, и координационных полиэдров, составляющих структуру кристалла. Полиэдр состоит из отрицательно заряженных ионов-лигандов (например, атомов кремния), находящихся в его вершинах, и расположенного в центе полиэдра положительно заряженного иона -металла. В ТКП пренебрегается электронной структурой лигандов, то есть лиганды отождествляются с точечными электрическими зарядами, и их роль сводится только к созданию электрического кристаллического поля. Симметрия кристаллического поля определяется симметрией координационных полиэдров, составляющих структуру рассматриваемого кристалла. Для полупроводников А , А В и А В следует рассматривать только два типа симметрии тетраэдрическую и для учета второй координационной сферы — октаэдрическую. Механизм преобразования электронных термов -иона в кристаллическом поле рассмотрен в [30]. Подобная модель позволяет получить общую картину поведения всех уровней -иона в кристаллическом поле качественный характер расщепления уровней, их взаимное расположение и относительные энергетические зазоры между ними.  [c.126]



Смотреть страницы где упоминается термин Основы теории энергетических зон кристаллов : [c.285]    [c.2]    [c.9]    [c.26]    [c.5]    [c.332]    [c.8]    [c.579]   
Смотреть главы в:

Введение в физику твердого тела  -> Основы теории энергетических зон кристаллов



ПОИСК



Основы теории

Теории энергетическая



© 2025 Mash-xxl.info Реклама на сайте