Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование уравнения движения маятника

Интегрирование уравнения движения маятника. Рассмотрим три случая в соответствии с возможными значениями константы h в интеграле (12).  [c.186]

Исследования Н.Е. Жуковского и С.А. Чаплыгина. Н.Е. Жуковский одним из первых анализировал разные задачи динамики точки в среде, а именно падение тел, движение тела, брошенного под углом к горизонту, движение маятника и т.д. Наряду с интегрированием уравнений движения, он совершенствовал модель взаимодействия тел с сопротивляющейся средой и считал, что кинетическая энергия падающего тела тратится на образование вихревых движений воздуха и, кроме того, на преодолевание молекулярных сил прилипания воздуха к движущемуся телу. Сопротивление зависит не только от скоростей движения точек тела, но и от формы самого тела. Если скорость мала, то с достаточной точностью можно принять сопротивление пропорциональным первой степени скорости. При больших скоростях сопротивление пропорционально квадрату скорости.  [c.12]


Необходимо все же отметить, что предварительные соображения, приводящие к упрощению выражений кинетической и потенциальной энергий, нельзя полагать достаточно обоснованными. Действительно, напомним замечания А. Н. Крылова по поводу приближенного метода интегрирования дифференциального уравнения движения сферического маятника ( 229 первого тома).  [c.230]

Все сказанное позволяет еще раз подчеркнуть неполноту заключений, полученных на основании интегрирования приближенных Л1[нейных дифференциальных уравнений движения. Действительно, теория линейных колебаний, примененная к исследованию движения маятника с отрицательным трением, позволяет найти условие самовозбуждения колебаний, выражаемое неравенством  [c.282]

Полное интегрирование рассматриваемой системы представляет трудную задачу, и мы не будем ею заниматься. Мы ограничимся в нашем рассмотрении бесконечно малыми колебаниями маятника вокруг положения устойчивого равновесия. Покажем сначала, что при этом можно привести уравнения движения к линейной форме и найти их общее решение.  [c.150]

Уравнения движения сферического маятника оказываются более сложными, чем уравнения движения свободной материальной точки, поскольку в эти уравнения входит сила реакции, являющаяся неизвестной функцией координат. Можно пытаться провести интегрирование уравнений методом последовательных приближений, предварительно исключив реакцию. Но и эта задача оказывается весьма сложной. Обычно при исследовании ограничиваются случаем малых колебаний (колебания с малой амплитудой), рассматривая движение приближенным методом. Отношения х// и у 1 рассматриваются как малые величины, квадратами которых в уравнениях движения можно пренебрегать. В таком случае  [c.293]

Наиболее примитивный подход к исследованию движения системы, состоящей из п материальных точек, будет, очевидно, сводиться к рассмотрению движений каждой отдельной точки системы. При таком подходе должны быть определены все силы, действующие на каждую точку системы, в том числе и все силы взаимодействия между точками. Определяя теперь ускорения каждой точки в соответствии с законом Ньютона, получим для каждой точки три скалярных дифференциальных уравнения движения второго порядка или Зп дифференциальных уравнений движения для всей системы. Дальнейшее исследование сведется в первую очередь к исключению лишних неизвестных и затем к интегрированию уравнений. Зачастую оказывается, что движение определяется меньшим числом параметров, чем имеется уравнений. Поэтому возникает проблема — отыскать такие методы решения задач, которые бы приводили к уравнениям, не содержащим лишних параметров и сразу дающим представление о движении механической системы. Первая такая попытка дать общие методы принадлежит швейцарскому математику и механику Якову Бернулли (1654—1705), который, изучая движение маятника, пытался сводить задачу о движении к задаче о равновесии. Дальнейшее развитие принципа принадлежит Даламберу.  [c.299]


Вставляя найденные значения постоянных интегрирования в уравнения (б) и (в), получим искомый закон движения сферического маятника  [c.490]

Точное интегрирование линейной системы уравнений.— Система уравнений (4), (5) линейная и может быть проинтегрирована до конца. Оставляя пока в стороне то обстоятельство, что речь идет о маятнике, мы можем придать этим уравнениям точный кинематический смысл, не предполагая движение тела обязательно бесконечно малым.  [c.152]

Первая лекция. Важность изучения колебательных движений при рассмотрении многих вопросов современной техники. Причины возникновения колебаний. Свободные колебания систем с одной степенью свободы. Типичные примеры колебания груза на пружине, крутильные колебания диска, колебания груза на конце консоли, малые колебания математического и физического маятника. Условия, при которых упомянутые системы можно рассматривать как системы с одной степенью свободы. Общность рассмотренных задач. Интегрирование дифференциального уравнения свободных колебаний. Параметрическая структура коэффициента жесткости. Возникновение нелинейных задач теории колебаний.  [c.22]

Такие задачи сравнительно просты в том отношении, что начальные скорости равны нулю, а потому не требуется интегрирования уравнений движения. Так, в случае математическою маятника длины I, выведенного из С0СТ0Я+1ИЯ покоя, при котором он Н Х0ДИТ Я под углом 0 к вертикали, ускорение в направлении нити, выражающееся формулой-—I D , равно нулю, и, следовательно, начальное натяжение нити будет  [c.179]

Обращаем внимание читателя на следующее замечание принципиального характера в предыдущих главах мы встречались с некоторыми задачами, решения которых в законченном виде мы не могли получить например, уравнение движения маятника уравнения движения твердого тела вокруг неподвижной точки даже в эйлеровом случае не интегрируются в элементарных функциях в случае задачи трех тел мы не можем свести интегрирование дифференциальных уравнений  [c.308]

Интегрирование этих дифференциальных уравнений движения двойного математического маятника связано с большими трудностями, однако, если считать углы отклонения ф1 и ф малыми, то решение упрощается и может быть доведено до конца. Задачи такого рода мы 6yAevi рассматривать в главе XX.  [c.443]

Первые серьезные для своего времени исследования колебаний восходят к XVII веку. Они были выполнены Г. Галилеем и затем X. Гюйгенсом и касались лишь маятника. В XVIII веке, с развитием математического анализа и теоретической механики, интерес к колебательным процессам уже подкрепляется основательной теоретической базой. Так, Л. Эйлер в России занимается изучением колебаний корабля в связи с вопросом о его устойчивости, а Ж. Даламбер во Франции работает над исследованием колебаний струны. В конце XVIII века Лагранж в своем замечательном труде Аналитическая механика создает мощный математический аппарат в виде хорошо известных теперь уравнений движения в обобщенных координатах. Рассмотрев с его помощью некоторые задачи теории колебаний, приводящиеся к интегрированию линейных дифференциальных уравнений, он тем самым заложил основы линейной теории колебаний.  [c.7]

Уравнение (6) имеет форму диференциального уравнения, впречаю-щегося во многих физических проблемах. Если даны начальные условия, то оно определяет движение математического маятника, колебание камертона, малые изменения в положении земной оси и т. д. Поэтому метод нахождения его решения и определение постоянных интегрирования должны быть основательно усвоены.  [c.47]


Смотреть страницы где упоминается термин Интегрирование уравнения движения маятника : [c.118]    [c.53]   
Смотреть главы в:

Теоретическая механика  -> Интегрирование уравнения движения маятника

Теоретическая механика  -> Интегрирование уравнения движения маятника



ПОИСК



Интегрирование

Интегрирование уравнений

Интегрирование уравнений движени

Маятник

Маятника уравнение

Уравнение движения маятника

Уравнения движения — Интегрирование



© 2025 Mash-xxl.info Реклама на сайте