Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения в потенциальном поле

УРАВНЕНИЯ ДВИЖЕНИЯ В ПОТЕНЦИАЛЬНОМ ПОЛЕ  [c.94]

Ш УРАВНЕНИЯ ДВИЖЕНИЯ В ПОТЕНЦИАЛЬНОМ ПОЛЕ [рЛ.-4  [c.108]

УРАВНЕНИЯ ДВИЖЕНИЯ В ПОТЕНЦИАЛЬНОМ ПОЛЕ 11. Уравнения Лагранжа в случае потенциальных сил. Обобщенный потенциал. Ненатуральные системы  [c.77]

УРАВНЕНИЯ ДВИЖЕНИЯ в ПОТЕНЦИАЛЬНОМ ПОЛЕ (ГЛ. II  [c.78]

УРАВНЕНИЯ ДВИЖЕНИЯ в потенциальном поле [ГЛ. II  [c.98]


Таким образом, в случае движения в потенциальных полях уравнения Лагранжа имеют более простой вид (29) и содержат только одну функцию-лагранжиан системы, вид которой зависит от выбора снстемы координат.  [c.133]

Вернемся теперь к уравнениям Лагранжа в форме (22) (все дальнейшее верно также и для уравнений Лагранжа, записанных для движений в потенциальных полях в форме (29)).  [c.140]

Уравнения Лагранжа, описывающие движение в потенциальных полях, имеют вид  [c.258]

Используя эти ранее установленные факты, мы получим теперь уравнения, специально приспособленные для описания движений в потенциальных полях, и изучим некоторые общие свойства таких движений. Весь материал этой главы в равной мере относится к системам, для которых существует обобщенный потенциал. Более того, за редкими исключениями, которые будут далее оговорены, он относится как к натуральным, так и к ненатуральным системам (см. 5 гл. IV). о связано с тем, что далее мы будем исходить из предположения, что движение системы может быть описано уравнениями Лагранжа (4), и лишь в отдельных особо оговариваемых случаях будем предполагать, что  [c.259]

Для дальнейшего обсуждения первых интегралов уравнений движения (законов сохранения) требуется использовать аппарат вариационного исчисления, который нужен нам также и для иных целей, связанных с изучением движений в потенциальных полях. Поэтому в следующем параграфе будут кратко изложены элементы вариационного исчисления, а затем, применяя соответствующий аппарат к теории движения в потенциальных полях, мы вернемся, в частности, к вопросу об общей теории первых интегралов уравнений движения.  [c.271]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]


В случае движения в потенциальных полях уравнения Лагранжа содержат только лагранжиан системы, вид которого зависит от выбора системы координат, 2. Если поместить начало координат в центре масс Солнечной системы, а координатные оси направить на какие-нибудь три неподвижные звезды, то получится гелиоцентрическая система координат.  [c.81]

Рис. 41. Объединение однотипных иллюстраций к различным разделам курса 1) колебательное движение одномерной консервативной системы в потенциальной яме 2) этапы построения траекторий и решения уравнений движения в центральном поле сил 3) зависимость одной из постоянных интегрирования от определяющей координаты при применении метода Гамильтона—Якоби. Аналогичные многозначные зависимости можно указать и в других случаях Объяснение. Решение многих задач механики упирается в интегрирование дифференциального уравнения вида Рис. 41. Объединение однотипных иллюстраций к различным разделам курса 1) <a href="/info/12919">колебательное движение</a> одномерной <a href="/info/8752">консервативной системы</a> в потенциальной яме 2) этапы построения траекторий и <a href="/info/51684">решения уравнений движения</a> в <a href="/info/8811">центральном поле</a> сил 3) зависимость одной из <a href="/info/8157">постоянных интегрирования</a> от определяющей координаты при применении <a href="/info/40011">метода Гамильтона—Якоби</a>. Аналогичные многозначные зависимости можно указать и в других случаях Объяснение. Решение <a href="/info/378373">многих задач</a> механики упирается в <a href="/info/174489">интегрирование дифференциального уравнения</a> вида
Для потенциальных баротропных движений в потенциальном поле внешних массовых сил уравнение импульсов в форме Лэмба—Гро-меки (8.4) может быть проинтегрировано. Действительно, при <д=0 это уравнение имеет вид  [c.147]

В книге рассмотрены основные формы уравнений движения твердого тела, включая движение в потенциальных полях, в жидкости (уравнения Кирхгофа), с полостями, заполненными жидкостью. Приведены условия понижения порядка этих уравнений и существования циклических переменных. Собраны практически все известные к настоящему времени интегрируемые случаи и способы их явного интегрирования. Для исследования широко используются компьютерные методы, позволяющие наглядно представить картину движения. Большинство результатов книги принадлежат авторам.  [c.2]

Пример 87. Свободная материальная точка массой т движется в потенциальном поле. Найти функцию Гамильтона и составить канонические уравнения, движения этой точки, если силовая функция поля равна U х, г/, г).  [c.372]

В тех случаях, когда интегралы уравнений (28) не могут быть найдены даже при предельном упрощении этих уравнений методами механики, изучаются общие свойства решений этих уравнений без их непосредственного нахождения. Так, например, для случая, когда движение происходит в потенциальных полях, механика определяет многие общие свойства движений без того, чтобы доводить до конца задачу об определении самих движений.  [c.64]

Вернемся к уравнениям Лагранжа (22) и рассмотрим случай, когда движение изучаемой системы происходит в потенциальном поле и все силы потенциальны. Для систем такого рода, как указывалось выше, все обобщенные силы также потенциальны, т. е. для них имеют место равенства (28). Подставляя в уравнения Лагранжа (22) выражения (28) для обобщенных сил, получаем  [c.132]

В связи с тем, что физика интересуется, главным образом, движением D потенциальных полях, здесь речь идет об уравнениях Лагранжа в форме (29).  [c.165]

Дифференциальные уравнения движения в обобщенных координатах qu дг, , для голономной системы в случае потенциального силового поля имеют вид  [c.119]

До сих пор в основе всех наших рассуждений лежали некоторые исходные представления, играющие во всем последующем построении роль аксиом. Мы постулировали, в частности, второй закон Ньютона и при гыводе основ ых законов и теорем механики всегда исходили из него. В настоящей главе, выводя уравнения движения в форме, ковариантной по отношению к любым точечным преобразованиям координат, мы также положили в основу рассуждений второй закон Ньютона и в конечном результате придали ему форму уравнений Лагранжа. В этом смысле второй закон Ньютона оказывается эквивалентным утверждению о том, что движение может быть описано уравнениями (22), а движение в потенциальном поле — уравнениями (29), где L = T—К.  [c.164]


В этом смысле уравнения (20) представляют собой эквивалент уравнений Лагранжа (4). Уравнения (20) разрешены относительно старших производных и представлены в симметричной и удобной форме. Их называют каноническими уравнениями или уравнениями Гамилыпона для движения в потенциальных полях.  [c.263]

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения — результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента — результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.  [c.293]

Записанный так интегральный инвариант Пуанкаре — Картана для консервативных систем отличается от интегрального И11ва-рианта в общем случае движения в потенциальном поле в трех отношениях во-первых, суммирование в первом члене ведется не от единицы до л, а от двух до п во-вторых, вместо гамильтониана Я в этом выражении стоит функция К, которая получилась, когда интеграл энергии (136) был разрешен относительно импульса Pi (см. выражение (138)) в-третьнх, роль t играет теперь <7i. Таким образом, воспользовавшись тем, что для консервативных и обобщенно консервативных систем гамильтониан не зависит явно от времени, мы исключили время из выражения интегрального инварианта Пуанкаре — Картана. Теперь совершенно так же, как в общих случаях движения систем в потенциальном поле из интегрального инварианта Пуанкаре — Картана следуют канонические уравнения Гамильтона, для консервативных и обобщенно консервативных систем из интегрального инварианта (139) следуют уравнения  [c.328]

Если движение происходит в потенциальном поле, надо не вычислять обобщенные силы, а составить выражение для потенциальной энергии системы, и затем, используя формулы (8), подставить в него декартовы координаты точек как функции новых координат. После этого надо найти кинетическую энергию так, как это было указано выше, и, снова выразив декартовы координаты и их производные через новые координаты, выписа1ь лагранжиан, т. е. разность кинетической и потенциальной энергий. Найденный таким образом лагранжиан подставляется в уравнения (29).  [c.134]


Смотреть страницы где упоминается термин Уравнения движения в потенциальном поле : [c.100]    [c.106]    [c.278]    [c.59]   
Смотреть главы в:

Введение в аналитическую механику  -> Уравнения движения в потенциальном поле

Введение в аналитическую механику  -> Уравнения движения в потенциальном поле



ПОИСК



Движение в потенциальных полях

Движение голономных систем в потенциальном поле Уравнения движения механических систем, обладающих потенциальными силами

Движение полчка

Движение потенциальное

Закон изменения импульса системы. Закон изменения момента импульса систеЗакон изменения кинетической энергии. Потенциальная энергия взаимодействия частиц Закон сохранения полной энергии. Уравнение Мещерского. Теорема вириала Движение свободной частицы во внешнем поле

Поле потенциальное

Уравнение Ван-дер-Поля



© 2025 Mash-xxl.info Реклама на сайте