Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение в потенциальных полях

Рассмотрим, какой вид получат выведенные выше формулы при движении в потенциальном поле лишь одной материальной точки. Силовая функция в этом случае имеет вид  [c.192]

Таким образом, в случае движения в потенциальных полях уравнения Лагранжа имеют более простой вид (29) и содержат только одну функцию-лагранжиан системы, вид которой зависит от выбора снстемы координат.  [c.133]

Вернемся теперь к уравнениям Лагранжа в форме (22) (все дальнейшее верно также и для уравнений Лагранжа, записанных для движений в потенциальных полях в форме (29)).  [c.140]


ДВИЖЕНИЕ В ПОТЕНЦИАЛЬНЫХ ПОЛЯХ  [c.258]

В предыдущих главах были установлены следующие важные факты, касающиеся движений в потенциальных полях.  [c.258]

Уравнения Лагранжа, описывающие движение в потенциальных полях, имеют вид  [c.258]

Используя эти ранее установленные факты, мы получим теперь уравнения, специально приспособленные для описания движений в потенциальных полях, и изучим некоторые общие свойства таких движений. Весь материал этой главы в равной мере относится к системам, для которых существует обобщенный потенциал. Более того, за редкими исключениями, которые будут далее оговорены, он относится как к натуральным, так и к ненатуральным системам (см. 5 гл. IV). о связано с тем, что далее мы будем исходить из предположения, что движение системы может быть описано уравнениями Лагранжа (4), и лишь в отдельных особо оговариваемых случаях будем предполагать, что  [c.259]

Понятие гамильтониана является одним из центральных понятий при изучении движения в потенциальных полях. С этим понятием нам предстоит иметь дело на протяжении всей главы.  [c.262]

ГЛ VII. ДВИЖЕНИЕ В ПОТЕНЦИАЛЬНЫХ ПОЛЯХ  [c.266]

Для дальнейшего обсуждения первых интегралов уравнений движения (законов сохранения) требуется использовать аппарат вариационного исчисления, который нужен нам также и для иных целей, связанных с изучением движений в потенциальных полях. Поэтому в следующем параграфе будут кратко изложены элементы вариационного исчисления, а затем, применяя соответствующий аппарат к теории движения в потенциальных полях, мы вернемся, в частности, к вопросу об общей теории первых интегралов уравнений движения.  [c.271]

Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Г.П VII ДВИЖЕНИЕ в потенциальных полях  [c.324]

УРАВНЕНИЯ ДВИЖЕНИЯ В ПОТЕНЦИАЛЬНОМ ПОЛЕ  [c.94]


До сих пор в основе всех наших рассуждений лежали некоторые исходные представления, играющие во всем последующем построении роль аксиом. Мы постулировали, в частности, второй закон Ньютона и при гыводе основ ых законов и теорем механики всегда исходили из него. В настоящей главе, выводя уравнения движения в форме, ковариантной по отношению к любым точечным преобразованиям координат, мы также положили в основу рассуждений второй закон Ньютона и в конечном результате придали ему форму уравнений Лагранжа. В этом смысле второй закон Ньютона оказывается эквивалентным утверждению о том, что движение может быть описано уравнениями (22), а движение в потенциальном поле — уравнениями (29), где L = T—К.  [c.164]

Условимся далее в этой книге системы, для которых L подсчитывается как Т — V, называть натуральными системами, а системы, для которых L вводится аксиоматически как-либо пваче, — ненатуральными системами. В гл. VII, посвященной исследованию движения в потенциальных полях, все изложение будет построено так, чтобы оно было верно как для натуральных, так и для ненатуральных систем, но, разумеется, мы будем при этом опираться на предположение о том, что удовлетворяется требование (78) и поэтому начальные данные полностью определяют движение.  [c.166]

В этом смысле уравнения (20) представляют собой эквивалент уравнений Лагранжа (4). Уравнения (20) разрешены относительно старших производных и представлены в симметричной и удобной форме. Их называют каноническими уравнениями или уравнениями Гамилыпона для движения в потенциальных полях.  [c.263]

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения — результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента — результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.  [c.293]

Во всех предыдущих параграфах данной главы мы рассматривали движение системы в потенциальном поле, но не требовали, чтобы поле это было стационарным. Именно поэтому мы предполагали, что лагранжиан, гамильтониан и иные функции, встречавшиеся нам по ходу изложения, могут зависеть явно от времени. В этом смысле изложенный выше материал охватывал движения в нестационарных потенциальных полях и, в частности, движение в потенциальном поле системы, имеющей механические реономпые связи. Для случая, когда система натуральна, связи склерономны и поле стационарно, т. е. когда потенциальная функция не зависит явно от времени, выше было установлено лишь то, что гамильтониан совпадает с полной энергией системы. Отправляясь от этого факта, мы ввели понятие обобщенно консервативной системы как такой гамильтоновой системы, в которой гамильтониан не зависит явно от времени, а сам гамиль-  [c.325]

Записанный так интегральный инвариант Пуанкаре — Картана для консервативных систем отличается от интегрального И11ва-рианта в общем случае движения в потенциальном поле в трех отношениях во-первых, суммирование в первом члене ведется не от единицы до л, а от двух до п во-вторых, вместо гамильтониана Я в этом выражении стоит функция К, которая получилась, когда интеграл энергии (136) был разрешен относительно импульса Pi (см. выражение (138)) в-третьнх, роль t играет теперь <7i. Таким образом, воспользовавшись тем, что для консервативных и обобщенно консервативных систем гамильтониан не зависит явно от времени, мы исключили время из выражения интегрального инварианта Пуанкаре — Картана. Теперь совершенно так же, как в общих случаях движения систем в потенциальном поле из интегрального инварианта Пуанкаре — Картана следуют канонические уравнения Гамильтона, для консервативных и обобщенно консервативных систем из интегрального инварианта (139) следуют уравнения  [c.328]



Смотреть страницы где упоминается термин Движение в потенциальных полях : [c.262]    [c.264]    [c.268]    [c.270]    [c.278]    [c.278]    [c.284]    [c.290]    [c.292]    [c.294]    [c.300]    [c.304]    [c.308]    [c.310]    [c.314]    [c.316]    [c.318]    [c.322]    [c.326]    [c.100]   
Смотреть главы в:

Классическая механика  -> Движение в потенциальных полях



ПОИСК



Движение голономных систем в потенциальном поле Уравнения движения механических систем, обладающих потенциальными силами

Движение материальной точки в потенциальном поле. Закон сохранения энергии

Движение полчка

Движение потенциальное

Движение системы в потенциальном силовом поле. Закон сохранения энергии

Движения в стационарном потенциальном поле (консервативные и обобщенно консервативные системы)

Закон изменения импульса системы. Закон изменения момента импульса систеЗакон изменения кинетической энергии. Потенциальная энергия взаимодействия частиц Закон сохранения полной энергии. Уравнение Мещерского. Теорема вириала Движение свободной частицы во внешнем поле

Закон сохранения механической энергии материальной точки и механической системы при движении в потенциальном силовом поле

Поле потенциальное

Поле скоростей при потенциальном движении, приближенное определени

Сохранение механической энергии материальной точки при движении в потенциальном силовом поле

Способы приближенного определения поля скоростей при потенциальном движении

Уравнения движения в потенциальном поле



© 2025 Mash-xxl.info Реклама на сайте