Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхностное Жидкостей

Натяжение поверхностное жидкости 162  [c.571]

Износ деталей машин и аппаратов может быть вызван трением металлических деталей друг о друга и воздействием рабочей среды — потоком жидкости или газа, царапанием твердых частиц о поверхность деталей и другими поверхностными процессами.  [c.503]

При обработке реактопластов со слоистыми и волокнистыми наполнителями охлаждающие жидкости jfe применяют из-за возможности набухания поверхностей материала. Для получения качественного поверхностного слоя обработку следует вести острозаточенным режущим инструментом при высоких скоростях резания, с малыми глубиной резания и подачей, В процессе обработки реактопластов образуется пылевидная и элементная стружка, которая плохо сходит с передней поверхности инструмента. Поэтому канавки для отвода стружки делают более емкими и полируют во избежание ее прилипания. Геометрия режущего инструмента характеризуется большими величинами переднего и заднего углов. Для обработки пластмассовых заготовок используют специальное или универсальное металлорежущее оборудование.  [c.442]


Эрозия — это износ и выбивание частиц из поверхности твердого металла под влиянием потока жидкого металла. Кавитацией называют разрушение твердого металла под микроударным воздействием жидкометаллической среды это воздействие проявляется при захлопывании на поверхности твердого металла паровых пузырьков, имеющихся в жидкости. Следовательно, кавитация — это усталостный процесс, протекающий в микрообъемах поверхностного слоя твердого металла.  [c.147]

V, p, Г, X, a и a — кинематический коэффициент вязкости, теплоемкость, теплота парообразования, коэффициенты теплопроводности, температуропроводности и поверхностного натяжения жидкости при температуре насыщения ty, р и р" —плотности жидкости и пара при температуре t, Гз — температура насыщения, К.  [c.175]

Давление, представляющее полное напряжение сжат 1я от действия всех внешних сил (поверхностных и массовых), приложенных к жидкости, называется абсолютным давлением.  [c.7]

Коэффициенты истечения отверстий малых абсолютных раз.меров Зависят также от числа Вебера, выражающего влияние поверхностного натяжения жидкости  [c.123]

Критическое состояние вещества впервые было открыто Д. И. Менделеевым в 1861 г. Критическую температуру Д. И. Менделеев назвал абсолютной температурой кипения, при которой поверхностное натяжение в жидкости становится равным нулю, т. е. исчезает различие между жидкостью и парообразным состоянием вещества (насыщенным паром).  [c.44]

Представление энергии смеси в виде (1.1.17), на основе которого и записываются уравнения энергии в этой главе, справедливо, если каждую фазу считать локально однородной, т. е. в каждом элементарном объеме смеси вещество каждой фазы, в том числе и включений (капель, частиц, пузырьков и т. д.), принимается однородным вплоть до самой поверхности раздела фаз, и поэтому энергия каждой составляющей считается пропорциональной ее массе. Это равносильно тому, что особенности поверхностного слоя вещества толщиной порядка радиуса молекулярного взаимодействия (- 10 Л1),являющегося границей раздела фаз, далее не учитывается. Для этого необходимо, чтобы размеры включений были во много раз больше толщины этого слоя. Кроме того, в (1.1.17) и везде в гл. 1 будет учитываться только та часть кинетической энергии смеси, которая связана с макроскопическим движением фаз со скоростями U . В действительности имеются еще мелкомасштабные (с характерным линейным размером, равным по порядку размеру неоднородностей смеси) течения (например, радиальные пульсационные движения вокруг пузырьков, обратные токи несущей жидкости около включений из-за их относительного движения в этой жидкости, хаотические движения включений). В большинстве существующих теорий взаимопроникающего движения кинетическая энергия такого движения не учитывается. Таким образом в качестве первого этапа в гл. 1 рассматривается случай, когда энергия смеси при однородном представлении энергий фаз является аддитивной по массе фаз. Учет поверхностных явлений в рамках представлений Гиббса и кинетической энергии мелкомасштабного движения фаз имеется в главах 2—4.  [c.30]


Здесь, как и ранее, по верхним повторяющимся индексам к, относящимся к координатным осям, производится суммирование /> / sii 3 si и определяют соответственно интенсивность фазовых переходов, силу на частицу со стороны несущей жидкости, работу межфазных сил, межфазный теплообмен и поверхностную энергию, отнесенные к одной частице. Далее, величины л У(12)1 У(12)2 W(i2)i, /С(12) определяют импульс, внутреннюю энергию и пульсационную энергию массы i-й фазы, претерпевающей фазовый переход. Величина гр характеризует изменение числа дисперсных частиц за счет дробления, слипания и образования новых частиц с и gf — соответственно приведенные тен-  [c.186]

Анализ этого уравнения, уравнений энергии мелкомасштабного движения идеальной несущей фазы (3.4.65) и движения тел в жидкости показывает, что кинетическая энергия макроскопического движения выделенного объема смеси меняется 1. Из-за обмена с внешней средой и энергией мелкомасштабного движения за счет работы поверхностных сил (первое слагаемое в правой части), сил Архимеда (второе слагаемое) и внешних массовых сил (третье и четвертое слагаемые) 2. Из-за обмена с кинетической энергией мелкомасштабного движения и внутренней энергией внутри выделенного объема 1) с интенсивностью  [c.194]

Подчеркнем, что полученное уравнение есть следствие предположения, что именно разность осредненных напряжений в фазах, определяющая фиктивные напряжения, формирует по линейному закону Гука деформации скелета из-за смещений зерен друг относительно друга. Таким образом, это уравнение задает совместное деформирование фаз с учетом несовпадения давлений в фазах из-за прочности скелета. В газожидкостных смесях давления в фазах могли различаться только из-за поверхностного натяжения и радиальных инерционных эффектов, описываемых уравнениями типа Рэлея — Ламба для размера пузырьков, а следовательно, и для объемного содержания фаз, когда разница между осредненными давлениями в фазах воспринималась поверхностным натяжением и радиальной мелкомасштабной инерцией и вязкостью жидкости. В насыщенной пористой среде разница между осредненными напряжениями воспринимается прочностью межзеренных связей.  [c.237]

Устойчивость сферических меж-фазных границ. Процесс разрушения капель и пузырьков чрезвычайно сложный и характеризуется взаимодействием сил поверхностного натяжения, вязкости и сил инерции. Условия для начала дробления можно получить, анализируя устойчивость жидкой сферы в потоке другой жидкости. Решение этой задачи даже в рамках малых возмущений очень сложно. Поэтому рассмотрим устойчивость первоначально плоской границы раздела двух идеальных жидкостей (т. е. эффекты вязкости отбрасываются) с плотностями р°, р2 и поверхностным натяжением S, движущихся с относительной скоростью V вдоль этой границы и с ускорением g в направлении. перпендикулярном к границе, причем g > О, если направлено от первой ко второй фазе.  [c.256]

При более сильных сокращениях пузырька амплитуда возмущений может стать сравнимой с его радиусом и он может раздробиться. При этом при достаточно больших неустойчивость пузырька может проявиться еще до того, как станет существенным влияние поверхностного натяжения (влияние 22/а), а также влияние вязкости и сжимаемости жидкости.  [c.259]

В ЭТОМ режиме, если можно пренебречь поверхностным натяжением и вязкостью жидкости, процесс определяется только инерцией жидкости или уравнением Рэлея  [c.292]

Появление адсорбированного слоя в зависимости от свойств жидкости может иметь различную физическую природу молекулярное или электрическое поле твердого материала, электрически заряженный двойной слой. Независимо от причины их образования в поверхностных слоях наблюдается изменение структуры жидкости (упорядочение слоев молекул) и, следовательно, изменение структурно чувствительных физических свойств (в частности, вязкости и теплопроводности). Отсюда следует, что первая из упомянутых ранее причин облитерации есть следствие образования адсорбированных слоев.  [c.25]


J[a поверхности раздела жидкости и газа действуют силы поверхностного натяжения, стрелгящиеся придать объему жидкости сферическую форму и вызывающие некоторое дополнительное давление. Одпако это давление заметно сказывается лишь при малых объемах жидкости и для сферических объемов (капель) определяется  [c.10]

Коэффициент а имеет следующие зпачеиня (Н/м) для разшлх жидкостей, граничащих с воздухом при температуре 20 С для воды 73 , спирта 22,5" , керосина 27 , ртути 460-10 . С ростом температуры поверхностное натяжение уменьшается.  [c.11]

Под предельной относительной скоростью Ио.пр будем понимать такую скорость частиц относительно жидкости, при которой силы инерции равны нулю и начинается равномерное движение частиц. Согласно исходным уравнениям (1-14) и (1-19) при равенстве всех массовых и поверхностных сил dvjldx=Q, Гот = о.пр. Определим силу Фт, вызванную наличием твердых частиц и их взаимодействием с внешними границами потока через потерю давления Дрт (см. 4-4)  [c.63]

Тепловое и силовое воздействие на обработанную поверхность приводит к структурным превращениям, изменениям физико-механи-ческих свойств поверхностных слоев обрабатываемого материала. Так, образуется дефектный поверхностный слой детали. Для умеш .-шения теплового воздействия процесс шлифования производят при обильной подаче смазочно-охлаждающих жидкостей.  [c.360]

При более значительных скоростях движения воды, превы-шаюш,пх скорости, приведенные на кривой (рис. 45), наблюдается сильное разрушение металла вследствие комплексного явлении коррозии и эрозии. Указанный внд разрушения, известный иод названием коррозионной эрозии, возникающий вследствие механического воздействия агрессивной среды на поверхностные слои металла, покрытые продуктами коррозии или пассивированные, часто встречается в химической промышленности при эксплуатации насосов, трубопроводов и тому подобного оборудования, где имеет место воздействие на металл быстродвижущихся потоков жидкости, жидких капель или пара.  [c.81]

Затвердевание металлов происходит при падении свободной энергии твердой фазы ниже уровня энергии жидкого состояния. Температура, при которой это имеет место, есть температура затвердевания (или в случае сплава) температура ликвидуса. Затвердевание требует, однако, образования в жидкости центров кристаллизации, механизм возникновения и роста которых весьма сложен. При температурах, лежащих ниже температур затвердевания, но близких к ней, различие в свободных энергиях жидкой и твердой фаз малы, поэтому и силы, приводящие к переходу между ними, невелики. Когда появляется твердый зародыщ, свободная энергия падает в результате перехода в твердую фазу, однако поверхностные силы на границе между фазами приводят к росту свободной энергии. И только когда эффект от образования новой фазы превысит этот поверхностный эффект, маленькая твердая частица сможет расти. Когда это происходит, говорят, что зарождается затвердевание и твердая фаза быстро распространяется в жидкости с выделением скрытого тепла, которое увеличивает температуру до температуры затвердевания. Величина переохлаждения, возможного до образования центров затвердевания, зависит от тепловых свойств конкретного металла.  [c.176]

Примеси, удовлетворяющие этим требованиям, обладают естественной активностью. Естественная активность дисперсных частиц, взвешенных в жидкости, связана с закономерностями зарождения центров кристаллизации на твердых поверхностях, которые rj общем виде были сформулированы П. Д. Данковым и С. Т. Конобеевским. Превращение на поверхности твердого тела развивается таким образом, чтобы конфигурация атомов твердой фазы сохранилась (или почти сохранилась) и в новой твердой фазе. Возникающая при указанном процессе кристаллическая решетка новой фазы сопрягается с кристаллической решеткой старой фазы подобными кристаллографическими плоскостями, параметры кото[)ых 01личаются друг от друга минимально. Причина закономерной ориентации двух фаз с термодп-ппмическои точки зрении состоит в том, что минимум поверхностной энергии обеспечивается при максимальном сходстве в расположении атомов на соприкасающихся гранях старой и новой фаз.  [c.36]

Рис. 2.1.3. Схема действия поверхностно о натяжения на элемент межфазной поверхностл в случае, когда, одна из фаз — жидкость. Рис. 2.1.3. <a href="/info/435233">Схема действия</a> поверхностно о натяжения на элемент межфазной поверхностл в случае, когда, одна из фаз — жидкость.
Случай, когда одна из фаз — жидкость. Когда одна из фаз — жидкость илн газ, межфазпая граница (илп поверхностная фаза) может рассматриваться как растянутая упругая тонкая пленка, имеющая вдоль любой линии d l натяжение H d l, где 2 фиксирована по величине и направлена по нормали к линии d l и по касательной к межфазной поверхности  [c.60]

В технологических процессах интерес представляет случай дисперсной смеси с частицами из ферромагнитного материала в магнитном поле, которое оказывает непосредственное моментное воздействие лишь на частицы (2-я фаза). Это приводит к их ориентированному мелкомасштабному враш,ению (Mj =5 0) с угловой скоростью 2, кинематически независимой от поля их осреднен-ных скоростей v . Вращение частиц за счет сил трения передается и несущ,ей фазе и приводит к мелкомасштабному с характерным линейным размером, равным размеру частиц, ориентированному вращению несущей жидкости М =7 0), Если магнитное поле не оказывает непосредственного воздействия на несущую фазу, т. е. она остается неполярной, то тензор напряжения в ней будет симметричным, а во второй фазе— несимметричным, причем его несимметрическая часть определяется воздействием внешнего магнитного поля на частицы. Симметричность тензора напряжений несущей фазы вытекает из симметричности тензора микронапряжений o l и совпадения среднеповерхностпых и среднеобъемных величин, что в свою очередь вытекает из регулярности этих величин. Несмотря на эти допущения, уравнения импульса и внутреннего момента несущей фазы могут быть приведены к некоторому виду, где, как и для дисперсной фазы, фигурирует несимметричный тензор поверхностных сил aji (см. 1,6 гл. 3).  [c.83]


Работа внутренних поверхностных сил PiAi = О, когда несущая фаза приближается к идеальной -> 0) несжимаемой d pildt = о) жидкости, и р А определяется формулой (3.6.44), когда несущая фаза приближается к очень вязкой (Рвц, 1) несжимаемой (dj Qildt = о) жидкости. Если отбросить в соответствии с допущением 4 эффекты вращения и учесть примечание после (4.2.12) об эффектах, связанных с величина  [c.195]

Интересно, что решение Адамара — Рыбчинского, реализующееся при большой вязкости несущей жидкости, не дает деформацию капли или пузырька. Для описания этой деформации необходимо учитывать инерционные эффекты в уравнениях Навье — Стокса и эффекты поверхностного натяжения на межфазпой  [c.254]

Детали, закаленные на мартенсит, упрочняют обработкой на белый слой точением твердосплавными резцами с большим отрицательным передним углом (до 45°) без смазочно-охлаждающих жидкостей при скорости резания 60 — 80 м/мин. Поверхностный слой при этом подвергается своего рода термомеханической обработке, представляющей собой совмещение процессов высокотемпературной деформации и вторичной закалки. На поверхности образуется светлая нетравящаяся корка толщиной 0,1—0,2 мм, обладающая высокой твердостью НУ 1000—1300 При исходной твердости материала НУ 600—700) и состоящая из мелкозернистого (размер зерна 0,05—0,1 мкм) тонкоигольчатого мартенсита втюричной закалки с высокодисперсными карбидными включениями. В зоне белого слоя возникают чрезвычайно высокие сжимающие напряжения (до 500 кгс/мм ), обусловливающие резкое повыщение циклической прочности. Усталостно-коррозионная стойкость повышается примерно в 10 раз п6 сравнению с исходной. Хорошие результаты получаются только йрн условии сплошности белого слоя. В противном случае на участках разрыва слоя возникают скачки напряжений, снижаюНтие циклическую прочность. Чистовую обработку белого слоя производят микрошлифованием, полированием и суперфинишированием.  [c.323]

Кривые 1 (см. рис. 6.13) соответствуют режимам сплошной кипящей пленки на внешней поверхности при однофазном течении жидкости внутри стенки. Температура охладителя при зтом практически не отличается от температуры пористого металла. Важной особенностью кривых является то, что их экстраполяция до внешней поверхности B ef да дает ее температуру 100 °С, причем форма этих кривых не изменяется при увеличении теплового потока вплоть до начала высыхания внешней поверхности в центре образца. Объясняется это тем, что часть лучистого теплового потока, возрастающая по мере утонения жидкостной пленки, проходит сквозь нее, поглощается тонким поверхностным слоем пористого метапла, нагревает его до температуры начапа закипания жидкости и затрачивается на ее испарение.  [c.146]


Смотреть страницы где упоминается термин Поверхностное Жидкостей : [c.276]    [c.63]    [c.570]    [c.576]    [c.7]    [c.37]    [c.198]    [c.209]    [c.374]    [c.178]    [c.104]    [c.408]    [c.452]    [c.28]    [c.62]    [c.112]    [c.188]    [c.189]    [c.306]    [c.26]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.450 ]



ПОИСК



Брока и Берда метод расчета поверхностного натяжения чистых жидкостей

Влияние вязкости и поверхностного натяжения в сжимаемой жидкости

Влияние модификаторов на поверхностное натяжение на границе жидкость — пар

Влияние поверхностного кипения охлаждающей жидкости на величину Тг.ст

Влияние поверхностного натяжения и воронкообразования на истечение жидкости из отверстий

Влияние поверхностных явлений на структуру термодинамических функций системы жидкость—пар

Влияние растворимых примесей на поверхностное натяжение на границе жидкость — кристалл и на переохлаждение расплава

Гармонически возбуждаемые поверхностные волны в жидкости, налитой в цилиндрический сосуд

Движение жидкости ниже водного зеркала. Поверхностная зона

ЖИДКОСТИ Поверхностное натяжение

Жидкости поверхностно активные

Жидкость. Свободная энергия поверхности и поверхностное натяжеРабота адгезии и когезии. Методы измерения поверхностного натяжения

Измерение скорости, поверхностного трения и расхода жидкости и газа

Интенсивность теплообмена при поверхностном кипении в условиях вынужденного движения жидкости

К- Щербаков, Особенности теплопередачи через стенку, оребренную продольными ребрами, при поверхностном кипении охлаждающей жидкости

Коэффи натяжения поверхностного жидкости

Массообмен между пузырьком газа и жидкостью в условиях поверхностной конвекции (конвекция Марангони)

Определение температурных зависимостей поверхностного натяжения кремнийорганических жидкостей

Отрыв жидкости с образованием суперкаверны, влияние поверхностного

ПОВЕРХНОСТНЫЕ СВОЙСТВА ОРГАНИЧЕСКИХ ЖИДКОСТЕЙ И ПОЛИМЕРОВ

Паровая каверна в несжимаемой жидкости. Учет поверхностного натяжения и поля переменного давления

Поверхностная энергия чистой жидкости

Поверхностное натяжение в критической точке системы жидкость — Кинетические коэффициенты

Поверхностное натяжение жидкост

Поверхностное натяжение органических жидкостей

Поверхностное натяжение различных жидкостей

Поверхностное натяжение чистых жидкостей

Поверхностные свойства жидкостей

Проблемы смазки Тонкие пленки и поверхностные силы Маслянистость жидкостей и скользкость твердых тел

Работа внешних поверхностных сил в вязкой жидкости

Работа внешних поверхностных сил в идеальной жидкости

Рамана и др. корреляция для поверхностного натяжения жидкостей

Рамана и др., для поверхностного натяжения жидкостей

Расчет поверхностного натяжения чистых жидкостей

Ренона и Праусница связывающая поверхностное натяжение жидкостей с температурой, обобщенная

Скорость жидкости местная поверхностная

Слой жидкости поверхностный

Спроу и Праусница корреляция для поверхностного натяжения жидкостей

Спроу и Праусница, для поверхностного натяжения жидкостей

Табл 43. Поверхностное натяжение жидкостей при

Хакима и др. метод расчета поверхностного натяжения чистых жидкостей

Шорнхорна корреляция для поверхностного натяжения жидкостей

Шорнхорна, для поверхностного натяжения жидкостей

Энергии поверхностного слоя и поверхностное натяжение жидкостей

Энергия поверхностная жидкости

Этан поверхностное жидкости



© 2025 Mash-xxl.info Реклама на сайте