Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель — нитрид бора

Уплотнительный материал КН (никель-кремний-нитрид бора) содержит в качестве наполнителя до 7% нитрида бора. Для повышения термостабильности порошка нитрида бора последний подвергается дополнительному азотированию при температуре 2000—2200° С в течение 2 ч.  [c.55]

Взамен спеченного материала С-5 в радиальных уплотнениях сопловых аппаратов КН (никель—кремний-нитрид бора) То же  [c.78]


Волокна бора, предназначенные для заращивания никелем, иногда предварительно покрывают нитридом бора. В этом случае волокна становятся непроводящими.  [c.232]

Композиционное плазменное покрытие (КПП), состоящее из 60% никеля, 35% меди и 5% нитрида бора, предложено использовать как антифрикционное [151],  [c.248]

Никель — дисульфид молибдена 137, 138 Никель — карборунд 120, 241 Никель — корунд 239 Никель — металлы 140, 145 Никель—муллит 232 Никель — нитрид бора 124, 139 Никель — оксид урана 146 Никель —оксид хрома 85, 125 Никель — органические полимеры 235 Никель — фосфор 238 сл.  [c.267]

Из бора можно изготавливать различные изделия горячим прессованием или холодным прессованием с последующим спеканием. Для горячего прессования пригодно обычное оборудование, применяемое для производства изделий из карбидов, но эта операция обычно осуществляется при более высоких температурах, так как никакой связки, подобной никелю или кобальту, в данном случае не применяется. Бор начинает пластически деформироваться при 1800°, и температура его прессования не должна превышать 2000°. При этом рекомендуется применять индукционный нагрев, а продолжительность спекания должна быть как можно короче. Для этого применяются графитовые пресс-формы, лучше футерованные нитридом бора. Все операции рекомендуется проводить в защитной атмосфере аргона или какого-либо другого газа. При прессовании бора в пресс-формах диаметром около 9 мм оптимальными, например, можно считать следующие режимы потребляемая электрическая мощность 25 кят, продолжительность нагрева 1.5—2 мин, давление прессования 3,5 -6,3 кг/мм-.  [c.92]

Как уже показано выше, при температуре 250°С наиболее стойкими материалами в хладоне 11 являются никель и никелевые сплавы, а реакции пиролиза этого хладона при температурах 900—1200 °С ведутся в аппаратуре из графита, нитрида бора, платины, никеля, сплавов платины и родия [68].  [c.176]

Изготовляют порошки путем распыления жидкого металла. Форма частиц может быть сферической или осколочной. Основные компоненты порошков — углерод, хром, кремний, марганец, никель, вольфрам, молибден, бор. Применяют также порошки из соединений карбидов, нитридов, оксидов.  [c.108]

Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).  [c.66]


Положительное влияние ионного легирования азотом и бором на износостойкость стали, никеля, титана, сплава Ti — 6А1 — 4V в условиях эрозионного изнашивания отмечается в работе [158]. Особенно большой эффект наблюдается после старения облученных материалов и связывается с упрочнением поверхности мелкодисперсными выделениями типа нитридов и боридов.  [c.95]

Все легирующие элементы уменьшают склонность аустенитного зерна к росту. Исключением является марганец и бор, которые способствуют росту зерна. Количественное влияние остальных элементов, измельчающих зерно, сильно разнится друг от друга. Никель, кобальт, кремний, медь (элементы, не образующие карбиды) относительно слабо влияют на рост зерна. Хром, молибден, вольфрам, ванадий, титан сильно измельчают зерно (элементы перечислены в порядке возрастания их действия), что является прямым следствием различной устойчивости карбидов (и нитридов) этих элементов. Избыточные карбиды, не растворенные в аустените, препятствуют росту аустенитного зерна (см. теорию барьеров — гл. X 2). Поэтому сталь, при наличии хотя бы небольшого количества нерастворимых карбидов, сохраняет мелкозернистое строение при весьма высоких температурах нагрева.  [c.256]

Разработаны н другие композиционные материалы на основе фторопласта-4 (наполненные фторопласты) [84, 89] ФН-202, ФН-3 (10% порошка никеля, 3 % нитрида бора и дисульфида молибдена) МС-13 (добавки меди и дисульфида молибдена) АМИП-15М (15 % ситалла и 3—5 % дисульфида молибдена).  [c.182]

Представляет интерес определить адгезию и смачиваемость твердых тел различной природы феноло-формальдегидной смолой. В данной работе изучалось смачивание 0 феноло-формальдегидной смолой новолачного типа твердых поверхностей различной природы — металлов (медь, никель, кобальт, железо, молибден, вольфрам, Ti, Та, Sn, Zn, Al, Ag — Си— Ti), окислов (AlaOg, SiOg), солей (Na l), алмаза, графита, кубического и гексагонального нитрида бора, карбида кремния. Исследовалось влияние поликонденсации и деструкции смолы на смачиваемость и адгезию.  [c.124]

Параметр ГО О X Si СЧ sb О Э С-1Л а s . 1Л — -.о ю ОС ГО а. t- ь- со АФГМ (графит) ФН-З (никель, нитрид бора) о о н со X U-  [c.49]

Особые технологические свойства и эксплуатационные характеристики в отвержденном состоянии придают эпоксидным клеям наполнители силикат алюминия, сульфат бария, сульфат кальция, каолин — текучесть мелко диспергированные металлы — обрабатываемость механизированными способами силикат циркония — ду-гостойкость порошки серебра, никеля — электро- и теплопроводность феноло-фор-мальдегидные микросферы — пониженную плотность оксид алюминия, кварцевая мука, слюда — повышенные электроизоляционные свойства нитрид бора — теплопроводность и теплостойкость стеклянные и другие волокна — повышенную прочность и жесткость асбест — повышенную теплостойкость, порошок цинка — коррозионную стойкость (клеевого соединения стальных деталей). При использовании порошкообразных наполнителей прочность при сдвиге как правило не растет, даже при малом их содержании (до 5 масс. ч. на 100 масс. ч. олигомера).  [c.471]

В зарубежной металлообработке также во все больших масштабах находят применение сверхтвердые синтетические и природные материалы. Среди них, в основном, две группы материалов материалы на основе алмазов и материалы на основе нитрида бора. Последние под торговым названием боразона появились в последние годы в продаже. К режущим материалам на основе алмазов следует отнести двухслойные пластинки под названием мегадиамант фирмы Дженерал электрик (США), трех-, четырехгранной или круглой форм с подложкой из твердого сплава и соединенным с ней в процессе синтеза тонким (около 0,7 мм) слоем поликристаллов алмаза, предназначенных для напайки на режущие инструменты пластинки фирмы Дебир (Англия) также круглой и квадратной форм из твердого сплава (диаметр до 9,52 мм) с тонким (0,5 мм) слоем нового материала под названием синдайт, состоящего из поликристаллов алмаза со связкой в виде кобальта или никеля.  [c.95]

Одним из эффективных способов использования фторопла-ста для подшипников является применение фторопластовых композиций с наполнителями. В этом случае увеличивается износостойкость подшипника и снижается коэффрщиеит трения, увеличивается теплопроводность, уменьшается хладотекучесть и линейное расширение. Изменяются и другие физико-механические свойства. Введением во фторопласт при переработке различных наполнителей получают композиционные материалы с новыми качественными свойствами. Наполнителями служат металлические порошки (бронза, медь, никель), минеральные порошки (тальк, ситалл, рубленое стекловолокно) и твердые смазки (графит, дисульфид молибдена, коксовая мука, нитрид бора). Применяемые в качестве наполнителей материалы по разному влияют на физико-механические и антифрикционные свойства фторопласта, имеют различную химическую стойкость, и поэтому выбор того или иного наполнителя зависит от условий работы подшипника. Так, при введении во фторопласт бронзового порошка в количестве 30 и 40% по массе теплопроводность материала увеличивается с 0,59-Ю- соответственно до 1,08-10" и 1,7-10 кал/(с-см-°С). Значительно повышает теплопроводность композиции графит (табл. 26). Твердые смазки в составе композиции существенно снижают коэффициент сухого трения. Разработаны фторопластовые композиции с комбинированными наполнителями, которые улучшают антифрикционные и физико-механические свойства и вместе с тем повышают теплопроводность и износостойкость. Обычно это достигают одновременным введением минерального пли металлического наполнителя и твердых смазок. Марки этих композиций приведены в справоч-  [c.95]


Изучение жаростойкости композиционных покрытий на основе никеля с оксидами редкоземельных элементов показало [131], что оксидная пленка на покрытиях в интервале температур 800—1100°С плотно прилегает к основе, а при температурах выше 1100°С отслаивается. Покрытие с ЬзгОз и N6203 при 1100—1200 °С разрушалось. Скорость окисления композиционных покрытий при температуре выше 900 °С больше, чем скорость окисления для N1, а по данным работы [131], скорость окисления КЭП никель — оксид титана выше скорости окисления N1 при 800—1100 °С. Снижение скорости окисления КЭП по сравнению со скоростью окисления контрольного покрытия наблюдалось при содержании частиц оксидов циркония, алюминия, тория и гафния. Повышение жаростойкости КЭП с матрицей из N1 при включении в него нитрида бора, талька отмечено в работах [130, 132, 133]. Окисление покрытий при 800— 1100°С проходит по закону, близкому к параболическому.  [c.89]

В качестве ТСМ обычно выбирают вещества, имеющие ламелярную структуру тальк, слюду, графит, дисульфиды молибдена, вольфрама и титана, буру, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, доталоцианин, селениды и теллуриды вольфрама [2]. В состав ТСМ входят также твердые органические соединения такие, как мыла, воски, твердые жиры. В ряд смазочных композиций включают полимерные пленки и ткани (нейлон, полиэтилен, полиамид, политетрафторэтилен, полифенилсилоксаны, термопластичные и фторированные полимеры и др.), а также металлические твердые покрытия из меди, латуни, свинца, олова, бария и цинка. Слоистые материалы, порошки металлов и полимеров применяют не только как самостоятельное смазочное средство, но и как наполнитель или присадку к пластичным, жидким и газообразным СОТС.  [c.271]

В качестве легирующих элементов используют кгфбиды и нитриды титана, молибдена, вольфрама, а также составы на основе никеля, хрома, кремния, бора и Дф. Хорошие результаты показывает комбинированная обработка, состоящая из электроискрового легирования и лазерной обработки, которая обеспечивает равномерное распределение легирующих элементов по слою, высокую производительность и прочность сцепления ПС с основным металлом. Лазерным микролегированием можно получить ПС с уникальными свойствами.  [c.262]

Для получения высокой окалиностойкости никель легируют хромом ( 20%), а для повышения жаропрочности — титаном (1,0—2,8 %) и алюминием (0,55—5,5 %). В этом случае при старении закаленного сплава образуется интерметаллидная у -фаза типа Nig (Ti, Al), когерентно связанная с основным у-раствором, а также карбиды Ti и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейшее увеличение жаропрочности достигается легированием сплавов молибденом и вольфрамом, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, который необходим для коагуляции избыточных фаз и рекристаллизации. Добавление к сложнолегированным сплавам кобальта еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен у-раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их с тугоплавкими соединениями. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением. В связи с этим для повышения жаропрочности при выплавке жаропрочных сплавов необходимо применять возможно более чистые шихтовые материалы, свободные от вредных легкоплавких примесей.  [c.310]

Важно знать влияние легирующих элементов на такие характеристики, как склонность к росту зерна, кар-бидообразованию и др. Детально эти вопросы рассмотрены в работах [9, 13—14]. По отношению к углероду легирующие элементы делятся на карбидообразующие (Nb, Zr, Ti, V, W и др.) и карбидонеобразующие (Ni, Si, Со, А1 и др.). К нитридообразующим элементам относятся алюминий, цирконий, ванадий, титан и др., к нитридонеобразующим— никель, кремний, медь и др. Все элементы, за исключением марганца и бора, уменьшают склонность аустенита к росту зерна при нагревании, причем наиболее эффективно влияют элементы, образующие труднорастворимые карбиды или нитриды (Ti, Nb, А1 и др.) значительно слабее влияют элементы, образующие твердые растворы (Ni, Si, Си и др.).  [c.19]


Смотреть страницы где упоминается термин Никель — нитрид бора : [c.138]    [c.55]    [c.58]   
Композиционные покрытия и материалы (1977) -- [ c.124 , c.139 ]



ПОИСК



Борова

Бору

Борусевич

Никель

Нитрид бора

Нитриды



© 2025 Mash-xxl.info Реклама на сайте