Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение композиционных материалов химической

A. Исторические аспекты применения композиционных материалов в химической промышленности.......................... 309  [c.308]

В авиации и космонавтике нашли широкое применение композиционные материалы на основе металлов, полимеров и керамики. Нет сомнения, что в недалеком будущем они получат применение и в других отраслях машиностроения - автомобильной, станкостроении, в химическом машиностроении и др.). Поэтому в учебнике дано подробное их описание.  [c.4]

Композиционные волокнистые материалы находят широкое применение в таких областях промышленности, как космическая техника, авиа-, судо-, автомобилестроение и т. д. Применение композиционных материалов в современных конструкциях дает существенный выигрыш в массе, прочности, долговечности, стойкости к коррозии и агрессивным химическим средам. Эти материалы служат и прекрасным заменителем металлов. Так, из общего объема полимерных материалов, потребляемых в США для замены металлов, 40—50 % идет на изготовление деталей автомобилей, приборов, счетных машин и других изделий общего машиностроения 30—35 % — на изготовление труб, фитингов и профилей 10—15 % — корпусов судов, деталей самолетов и ракет [43].  [c.5]


Компаундами называются композиционные материалы, не содержащие растворителя, находящиеся в момент применения при нормальной или повышенной температуре в жидком состоянии и твердеющие после применения в результате охлаждения или в результате происходящих в них химических процессов.  [c.118]

Создание композиционных материалов стало объектом особого внимания только в последние пятнадцать лет, хотя идея применения двух или более исходных материалов в качестве компонентов, образующих композиционную среду, существует с тех пор, как люди стали иметь дело с материалами. С самого начала цель создания композитов состояла в том, чтобы достичь комбинации свойств, не присущей каждому из исходных материалов в отдельности. Таким образом, композит можно изготавливать из компонентов, которые сами по себе не удовлетворяют всем предъявляемым к материалу требованиям. Поскольку эти требования могут относиться к физическим, химическим, электрическим и магнитным свойствам, оказалось необходимым участие исследователей разных специальностей.  [c.7]

Отличительной особенностью газофазных, химических или электрохимических методов получения композиционных материалов является отсутствие или незначительное температурное или механическое воздействие на волокна в процессе совмещения их с матрицей а также возможность формирования изделий или полуфабрикатов сложной конфигурации. Методы испарения и конденсации, катодное распыление и другие методы, не нашедшие широкого применения, в настояш,ей книге не рассматриваются.  [c.167]

Композиционные материалы наряду с высокой удельной прочностью обладают малой плотностью, а также низкой теплопроводностью, высокой химической стойкостью и теплостойкостью, антикоррозионными, электроизоляционными и другими свойствами, которые обусловили широкое применение их в различных отраслях народного хозяйства.  [c.3]

Пластические массы — материалы на основе высокомолекулярных смол (искусственных или природных). Физико-химические свойства смол определяют технические и технологические параметры пластических масс, которые могут изменяться в определенных пределах (иногда значительно) благодаря применению наполнителей или специальных армирующих материалов. Такие композиционные материалы в настоящее время часто используются взамен ненаполненных полимеров.  [c.681]

Использование композиционных материалов для защиты от коррозии в различных технологических процессах в условиях промышленного производства стимулировало развитие методов испытаний этих материалов на влияние коррозионных сред. Лабораторные и натурные испытания, проводимые как государственными, так и частными фирмами, позволяют дать рекомендации по применению армированных полимерных материалов в системах химического производства [3].  [c.440]


Укладка непрерывных волокон в направлении действия силы позволяет полностью реализовать повышенные механические показатели таких материалов, как стекло, углерод, бор, которые в форме волокон относятся к наиболее прочным из известных материалов. Многие композиционные материалы, полученные таким способом, обладают очень высокими показателями, требуемыми, например, в аэрокосмической технике, где вопросы стоимости не являются первостепенными. Стеклопластики остаются важнейшими конструкционными композиционными материалами и находят чрезвычайно широкое применение в строительстве, судостроении (легком и тяжелом), самолето- и автомобилестроении, химической промышленности, в быту.  [c.108]

Корреляция между межслоевой прочностью при сдвиге композиционных материалов на основе углеродных волокон и модулем упругости волокон (рис. 2.59) [110] отражает важнейший недостаток углеродных волокон. В общем случае сдвиговая прочность композиционных материалов снижается с повышением модуля упругости углеродных волокон (степени их графитизации). Это частично обусловлено тем, что поверхность низкомодульных высокопрочных (тип 2) углеродных волокон — открытая и высокопористая, тогда как поверхность высокомодульных (тип 1) волокон — более гладкая. Пористость волокон вызывается выделением летучих продуктов пиролиза, количество которых уменьшается в процессе графитизации с одновременным повышением регулярности кристаллов в результате протекания диффузионных процессов, Другим важным фактором, определяющим сдвиговую прочность этих материалов, является способность полимерного связующего смачивать поверхность углеродных волокон. Низкомодульные углеродные волокна имеют более высокую поверхностную энергию из-за наличия большого количества химически активных групп. Количество этих групп уменьшается при повышении температуры карбонизации, и они практически исчезают при графитизации. Для решения проблемы низкой сдвиговой прочности композиционных материалов на основе углеродных волокон было проведено большое число исследований по повышению адгезионной прочности сцепления волокон с матрицей без снижения прочности волокон. При этом использовали два основных способа — повышение шероховатости поверхности волокон для обеспечения их лучшего механического сцепления с матрицей и создание химических связей между волокнами и матрицей (аналогично применению аппретов в стеклопластиках). Оба эти способа заключались в окислении поверхности углеродных волокон  [c.122]

Применение полимерных композиционных материалов для упаковки, при обработке и хранении товаров и продуктов является очень широкой областью их использования. В данной главе дан общий обзор применения полимерных композиционных упаковочных материалов и приведены некоторые наиболее важные примеры. В первой главе настоящей книги дается определение полимерных композиционных материалов. Если принять это определение с дополнением, что по крайней мере одна или несколько непрерывных фаз в этих материалах должны быть полимерными, то оно будет очень близким к определению пластических масс, данному в британском стандарте BS 1755 1951, как широкой группы твердых и жестких композиционных материалов на основе синтетических или модифицированных природных полимеров, которым на одной из стадий получения и переработки может быть придана требуемая форма свободным литьем или формованием с приложением давления и последующим затвердеванием или химическим отверждением . В стандарте BS 1755, часть 1, 1967 из этого определения было исключено слово композиционных . Однако в любом случае очевидно, что большинство пластических масс являются полимерными композиционными материалами и поэтому настоящую главу можно было бы назвать Применение пластических масс в качестве упаковочных материалов . Учитывая, что для анализа всех проблем использования пластических масс для упаковки, при обработке и хранении товаров и продуктов требуется по меньшей мере целая книга, в этой небольшой главе рассматриваются следующие важнейшие тины полимерных композиций  [c.453]

Область применения композитных материалов на полимерной основе постоянно расширяется. Конструкции из полимерных композитов используются в качестве несущих элементов и деталей машин, летательных аппаратов, водных и наземных транспортных средств, протезирующих систем, продолжается внедрение полимерных материалов в строительство и мелиорацию. Важное место занимают они среди конструкционных материалов новых видов техники. Постепенное вытеснение полимерными композитами классических конструкционных материалов (древесины, сталей, металлических сплавов и обычных видов керамики) обусловлено сочетанием в них целого ряда практически важных качеств. Во-первых, это высокие удельные значения деформативных и прочностных характеристик, реализованные в таких широко известных современных композиционных материалах на полимерной основе, как стекло-, угле-, боро- и органопластики. Во-вторых, химическая и коррозионная стойкость, а также широкий спектр электрофизических и тепловых свойств полимерных композитов. В-третьих, их высокая экономическая эффективность как материалов, производимых из дешевых видов сырья. Наконец, высокая технологичность полимерных композитов при применении их в габаритных изделиях различных геометрических форм. По совокупности всех этих показателей композиционные материалы на полимерной основе успешно конкурируют с классическими конструкционными материалами.  [c.8]


В последнее время в конструировании химической аппаратуры все большее применение находят композиционные материалы, которые по механической прочности превосходят даже качественные стали, а по коррозионной стойкости не уступают керамике, стеклу и эмалям.  [c.39]

Анизотропия свойств графитовых материалов, особенно пироуглерода и пирографита, обеспечивает потребителю широкие возможности их использования например, один и тот же элемент может быть использован и в качестве электропроводного, и в качестве электроизоляционного материала. В зависимости от условий применения графит может быть и хорошим антифрикционным материалом, и материалом с очень сильным износом. В технике высоких температур графит нашел всеобщее признание как одно из самых тугоплавких веществ. Трудно найти такую отрасль промышленности, в которой не было бы потребности в углеграфитовых материалах. В качестве материалов подшипников и вкладышей он используется в машиностроении, судостроении, авиации и др. В качестве конструкционного материала —в высокотемпературных установках, теплообменниках для химической промышленности, в ядерной технике, в создании композиционных материалов для авиации, в ракетной технике, судостроении. Тепловые свойства графита широко используются в высокотемпературных установках, в том числе в МГД-генераторах, а также в ракетной технике. В ракетах, работающих на твердом топливе, графит применяется для деталей соплового аппарата. Поверхность горловины сопла может нагреваться до температуры, которая всего лишь на 55—110 град ниже теоретической температуры вспышки топлива, колеблющейся в пределах 2700—3600°С [173, с. 18—40]. Для ядерных ракет графит является одним из лучших материалов, поскольку он обладает высокой температурой плавления, отличной термостойкостью и хорошей технологичностью [173, с. 41—65]. Все большее значение приобретают углеграфитовые материалы при литье металлов как для тиглей, так и для литейных форм.  [c.4]

Качественно новый уровень свойств полимерных композиционных материалов достигается при карбонизации полимерной матрицы, достигаемой в углерод-углеродных композиционных материалах (УУКМ). Эти материалы представляют собой систему углеродное волокно — углеродная матрица, отличающуюся уникальными свойствами чрезвычайно высокой теплостойкостью (в инертной среде они сохраняют свои высокие удельные физикомеханические характеристики вплоть до 2500 К и в отличие от углепластиков могут длительно эксплуатироваться при повыщенных температурах), хорошей стойкостью к термоударам, высокой химической стойкостью, что делает весьма перспективным их применение в химическом мащиностроении. На рис. 3.4 показаны принципиальные схемы структуры УУКМ.  [c.119]

Метод используют для сварки плавлением композиционных материалов с матрицей из химически активных металлов и сплавов (алюминия, магния, титана, никеля, хрома). Сварку осуществляют неплавящимся электродом в атмосфере аргона или смеси с гелием. Для регулирования теплового воздействия сварки на материалы целесообразно применение импульсной дуги, сжатой дуги или трехфазной дуги.  [c.503]

Композиционные материалы со свинцовой материцей, армированные углеродными волокнами, применяют в химической промышленности при пропзЕОДстве батарей и аккумуляторов, в строительстве, в изделиях, работающих на трение, и др. Эти материалы имеют особое значение, так как они приобретают конструкционные свойства. Предел прочности и модуль упругости свинца равен 1,4 кгс/мм и 1400 кгс/мм соответственно. Армирование свинца углеродными волокнами дает возможность повысить указанные свойства и получить композиционный материал с пределом прочности и модулем упругости более чем в 10 раз выше, чем у свинца. Это позволяет значительно расширить области применения композиционных материалов на основе свинца в химической, строительной и других отраслях промышленности для оборудования и аппаратуры, обладающей высокой стойкостью в агрессивных средах, способных подавлять звуковые колебания, поглащать гамма-излучения и выполнять другие функции.  [c.239]

Находят применение композиционные материалы на основе фторопласта-4. Отечественная химическая промышленность выпускает ряд таких материалов для узлов трения. В табл. 18 приведен состав и свойства материалов, разработанных ОНПО Пластполимер и другими организациями. Эти материалы имеют низкие коэффициенты трения, причем статический и динамический коэффициенты трения при малых скоростях близки по своему значению, что обеспечивает плавность и равномерность медленных перемещений подвижных узлов. При возвратнопоступательном движении в присутствии смазки с абразивными продуктами (10%)  [c.23]

Применение композиционных материалов в летательных аппаратахпозво-лило снизить их массу, повысить эксплуатационные характеристики. Современные композиты являются перспективными материалами не только для авиационной и космической техники, но могут быть с успехом использованы в автомобилях, трубопроводах, сосудах и аппаратах химических производств, судостроении, сельскохозяйственном машиностроении и легкой промышленности.  [c.3]

Отсутствие механизированных производственных процессов с необходимыми производственными мощностями представляет собой проблему в таких совершенно различных отраслях промышленности, как судостроение, авиация и химическая промышленность. Крупные и сложные конструктивные элементы в отдельных случаях изготовляются выкладкой вручную, что иногда приводит к выбору малоэффективной конфигурации этих элементов. Решение проблем, призванных сократить время, необходимое для освоения новых материалов, в сильной степени зависит от разработки новых принципов конструирования. К ним относят более эффективное использование обычных материалов и выборочное применение вновь созданных, а в случае композиционных материалов — использование высокоэффективных волокнистых композиций возможность применения механизированных производственных процессов с минимальной механической обработкой учет характера допустимого повреждения и возможности восстановления и увеличения тем самым цикла слунсбы. При выборе материала для каждого конкретного случая с самого начала должны быть приняты во внимание многие сложные, находящиеся во взаимодействии факторы. Это позволит в дальнейшем исключить затраты в тех случаях, когда материал, выбранный для решения конкретной задачи, не обладает соответствующими характеристиками, и это выявляется при более детальном его исследовании. Правильный выбор материала крайне важен как с экономической точки зрения, так и во многих других отношениях. Конструкторская  [c.494]


Нормативная база испытаний на трегциностойкость, созданная с участием авторов монографии в 1980-1990-е годы, обеспечила проведение массовых исследований малоуглеродистых и низколегированных сталей, сталей специального назначения, сплавов на основе алюминия, титана, плакированных сталей и композиционных материалов. Полученные результаты по-прежнему будут использоваться в качестве основных при изготовлении несугцих конструкций большинства потенциально опасных объектов. В то же время широкое применение должны получить материалы на основе нанопорошков химических соединений, биметаллические и слоистые материалы, керамические конструкционные материалы.  [c.6]

Композиционные материалы с титановой матрицей являются перспективными жаропрочными материалами для авиакосмической техники и найдут применение в новых конструкциях реактивных двигателей, где возникает необходимость в материалах, вьщерживающих температуру эксплуатации до 800 °С. Использование композиционного материала позволяет значительно снизить массу конструкции, что крайне необходимо двд аэрокосмической техники. В настоящее время ведутся исследования по созданию из КМ деталей компрессора, например лопаток, турбин и др. К материалу матрицы жаропрочного КМ предъявляются следующие требования значительное сопротивление окислению, высокая прочность при повышенных температурах, удовлетворительная пластичность при комнатной температуре. Между материалом волокон и матрицей не должно происходить химического взаимодействия при повышенных температурах. В качестве матрицы жаропрочных КМ могут быть использованы псев-до-а-титановые сплавы, например сплав IMI834. В качестве упрочните-ля выступают волокна Si . Сплав IMI834, упрочненный волокнами Si (S S-6), предназначен для эксплуатации при температурах до 550 °С. При производстве данных КМ используются технологии магнетронного распыления и горячее изостатическое прессование. Для предотвращения химического взаимодействия при повышенной температуре волокна и матрицы используются защитные покрытия волокон и метод фазовой  [c.202]

Как нн удивительно, в литературе отсутствуют какие-либо сообщения о систематических исследованиях явлений переноса в асбопластиках, несмотря на их широкое применение. Изучение коэффициентов теплопроводности однонаправленных композиционных материалов на основе антофиллита и эпоксидного связующего было предпринято НИИ взрывчатых веществ [24] в связи с их применением в качестве материалов конструкционного назначения в химическом машиностроении и в качестве высокотемпературных теплоизоляционных материалов. Результаты этого исследования, приведенные на рис. 7.15, являются первым шагом в заполнении пробела в наших знаниях в этой области. Было исследовано влияние объемной доли волокна и температуры на k r-Для установления корреляции между экспериментальными и расчетными данными были использованы уравнения (7.24) и (7.25), которые, как отмечалось выше, оказались вполне приемлемыми для установления такой корреляции для коэффициентов теплопроводности в поперечном направлении композиционных материалов на основе углеродных волокон. Кроме того, на рис. 7.15 приведены некоторые дополнительные данные, относящиеся к композиционным материалам на основе тканых матов и матов с хаотически расположенными в плоскости хризотиловыми волокнами, и некоторые показатели свойств композиционных материалов на основе эпоксидной смолы. Имеется некоторое различие в свойствах материалов на основе хризотила и антофиллита. Для облегчения сравнения свойств композиционных материалов данные на рис. 7.15 отнесены к общепринятой стандартной температуре 35 °С. Экспериментально установлено [24], что для композиционных материалов на основе антофиллита и эпоксидной смолы характерны низкие значения температурного коэффициента теплопроводности. Его значение аналогично значению температурного коэффициента эпоксидной матрицы при всех исследованных объемных долях волокна и приблизительно равно 0,4-10 Вт/(м-К ).  [c.314]

Однако процесс диффузионной сварки не может быть применен при изготовлении углеметаллических композиционных материалов, так как этот процесс не обеспечивает проникновения матричного металла в тонкие капилляры между отдельными волокнами. Теоретически проникновение матричного металла в 1 анилляры между моноволокнами без механического повреждения последних может быть осуществлено лишь при жидкофазной пронитке каркаса из армирующих волокон матричным расплавом, при электрохимическом или химическом осаждении матричного металла или сплава из газовой фазы (последний способ в настоящее время усиленно разрабатывается). Методы изготовления композиционных материалов применительно к конкретным системам металл — углеродное волокно будут подробнее рассмотрены в дальнейшем.  [c.357]

Причиной их широкого распространения в современной технике служит своеобразный комплекс физико-механических характеристик чрезвычайно высокая стойкость в различных агрессивных средах, хорошее демпфирование звуковых колебаний, вибропоглощение и отличные антифрикционные свойства. Основной недостаток свинца и сплавов на его основе — низкая прочность, серьезно ограничивающая область их применения. Одним из решений проблемы повышения прочности свинцовых сплавов является создание композиционных материалов на их основе, армированных, например, углеродными волокнами. Потенциальными областями применения такого материала могут быть нагруженные детали химического оборудования, свинцовые пластины в аккумуляторах, элементы звукопоглощающих нанелей и высоко-нагруженные самосмааывающиеся детали, работающие в условиях трения.  [c.406]

Одним из эффективных способов использования фторопла-ста для подшипников является применение фторопластовых композиций с наполнителями. В этом случае увеличивается износостойкость подшипника и снижается коэффрщиеит трения, увеличивается теплопроводность, уменьшается хладотекучесть и линейное расширение. Изменяются и другие физико-механические свойства. Введением во фторопласт при переработке различных наполнителей получают композиционные материалы с новыми качественными свойствами. Наполнителями служат металлические порошки (бронза, медь, никель), минеральные порошки (тальк, ситалл, рубленое стекловолокно) и твердые смазки (графит, дисульфид молибдена, коксовая мука, нитрид бора). Применяемые в качестве наполнителей материалы по разному влияют на физико-механические и антифрикционные свойства фторопласта, имеют различную химическую стойкость, и поэтому выбор того или иного наполнителя зависит от условий работы подшипника. Так, при введении во фторопласт бронзового порошка в количестве 30 и 40% по массе теплопроводность материала увеличивается с 0,59-Ю- соответственно до 1,08-10" и 1,7-10 кал/(с-см-°С). Значительно повышает теплопроводность композиции графит (табл. 26). Твердые смазки в составе композиции существенно снижают коэффициент сухого трения. Разработаны фторопластовые композиции с комбинированными наполнителями, которые улучшают антифрикционные и физико-механические свойства и вместе с тем повышают теплопроводность и износостойкость. Обычно это достигают одновременным введением минерального пли металлического наполнителя и твердых смазок. Марки этих композиций приведены в справоч-  [c.95]

При сварке сталей с большим запасом аустенитности, особенно толщиной >14... 16 мм, высокая трещиноустойчивость достигается при легировании швов дополнительно марганцем, молибденом, азотом ограничении содержания серы (до 0,010 %), фосфора (до 0,01 %), кремния (до 0,2...0,3 %) исключении из них титана, ниобия, алюминия, а в ряде случаев при использовании композиционного по составу и структуре многослойного металла шва. В последнем случае 70...80 % сечения шва ( несущие слои) выполняются с применением сварочных материалов, отличных по химическому составу от свариваемой стали и обеспечивающих аустенитно-ферритную  [c.62]


Наряду с тугоплавкостью нитридная керамика обладает хорошими электроизоляционными и полупроводниковыми свойствами при высокой температуре и сохраняет высокую термостойкость, химическую стойкость, малый коэффициент термического линейного расширения. Наиболее широкое применение получили высокотемпературные соединения 81зЫ4, BN, A1N и композиционные материалы на их основе, обладающие высокими электроизоляционными свойствами.  [c.693]

Что касается композиционных материалов, то нужно помнить одно общее правило если хотя бы один из компонентов компози-. та химически нестоек к действию данной среды, то применение т такого материала в этой среде нежелательно. %  [c.16]

К группе пластических масс и защитных покрытий на основе фенолоформальдегидных смол, нашедших применение в качестве химически стойких материалов, относятся следующие слоистые и композиционные материалы фаолит, текстолит, текстофаолит, стеклотекстолит, а также лаки, арзамиты (вяжущие вещества) и некоторые специальные мастики. Литые пластмассы (карболиты) вследствие их хр) Пкости в антикоррозионной практике прилюняются мало.  [c.410]

III. Применение в композиционных материалах металлических матриц, легированных элементами с большим сродством к армирующему наполнителю, чем металл матрицы, или поверхностно-активными добавками. Происходящее при этом изменение химического состава границ раздела должно препятствовать развитию межфазного взаимодействия [6] Легирование матричных сплавов поверхностно-активными или карбидообразующимн добавками, так же как и нанесение технологических покрытий иа волокна, может способствовать улучшению смачиваемости металлическими расплавами армирующего наполнителя.  [c.493]

Большие перспективы ожидаются при применении высокоэнергетического измельчения и вообше механохимического синтеза при изготовлении электроконтактных порошковых материалов, широко применяющихся в узлах коммутации электрического тока высоко- и низковольтного назначения (различные реле, выключатели, пускатели, контакторы и т.п.). Требования, предъявляемые к этим материалам, весьма разнообразны и противоречивы малое удельное и контактное сопротивление, незначительная эрозия, механическая прочность и химическая инертность, высокая теплопроводность и т.д., что может быть достигнуто лишь при композиционном строении, т. е. при сочетании высокоэлектропроводных металлов (Си, А ) и тугоплавких трудноиспаряемых компонентов ( , Мо, СбО). Гетерогенизация структуры до нановключений с возможностью повышения концентрации проводящих компонентов могла бы привести к созданию новых высокоэффективных контактных материалов. Изучение механохимического синтеза в системе W—А показало, что размер вольфрамовых частиц после 15-часового измельчения и взрывного прессования смесей составлял 7—9 нм, а твердость была выше твердости исходных компонентов [30].  [c.164]

I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]

В последние годы получило развитие производство химически загущенных композиционных формовочных систем. Листовые и объемные формовочные материалы становятся стандартными для многих автомобильных деталей, таких как обрамление облицовки (решетки) радиатора, панель передних фар и удлинители крыльев, используемых на большинстве легковых автомобилей. С применением в изделиях низкоусадочных и требующих малой фасонной обработки полиэфирных смол при относительно высоком давлении прессования (- 6,9 МПа) сложные детали могут быть изготовлены методом прямого прессования с производительностью 30 шт. в 1 ч на одну пресс-форму. Так как ребра жесткости, бобышки и элементы утолщения стенок могут быть заформованы в деталь, операции механической обработки, изготовления и объединения деталей существенно упрощаются по сравнению с обработкой аналогичных деталей, изготовленных из стального листа штамповкой или литьем в постоянные формы.  [c.496]


Смотреть страницы где упоминается термин Применение композиционных материалов химической : [c.5]    [c.418]    [c.8]    [c.416]    [c.473]    [c.184]    [c.37]    [c.102]    [c.424]    [c.41]    [c.37]   
Структура и свойства композиционных материалов (1979) -- [ c.239 ]



ПОИСК



Композиционные материалы

Применение композиционные — Применение

Применение композиционных материалов



© 2025 Mash-xxl.info Реклама на сайте