Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера теорема (о движении жидкости

Теорема Лагранжа о безвихревом движении жидкости и теорема Гельмгольца о сохранении вихрей справедливы при предположениях, что жидкость идеальна, баротропна и массовые силы консервативны. Вопрос о том, к чему приводит отказ от предположения об идеальности жидкости, будет рассмотрен в дальнейшем. В этом параграфе будет показано, что если жидкость не баротропна или массовые силы не консервативны, то вихри даже в идеальной жидкости могут возникать и уничтожаться. При доказательстве теоремы Томсона было получено равенство (1.6). Учитывая уравнения Эйлера, описывающие движение идеальной жидкости  [c.221]


Теорема Эйлера о количестве движения. Выведем теперь общую форму теоремы, установленной в п. 1.90. Из формулы (1) п. 3.40 мы имеем следующее выражение для скорости изменения количества движения жидкости внутри замкнутой поверхности 5  [c.83]

Начнем с доказательства теоремы Жуковского о подъемной силе крыла в плоскопараллельном потоке. Предлагаемое ниже векторное доказательство теоремы Жуковского только по форме отличается от классического доказательства этой теоремы, данной ее автором. Применим теорему количеств движения в форме Эйлера [ 23, формула (38)] к объему жидкости, заключенному между поверхностью обтекаемого контура С (рис. 89) и проведенной в удалении от контура С окружностью круга Q с центром в точке О и радиусом г. Пренебрегая объемными силами, будем иметь, заменяя в формуле (38) 23,  [c.278]

Рассмотрим два поперечных сечения 51 и5г на большом расстоянии от А вверх и вниз по потоку. Жидкость, заключенная между этими сечениями, может быть разделена на элементарные трубки тока, к каждой из которых применима теорема Эйлера о количестве движения. Наружные элементарные трубки тока ограничиваются стенками трубки, и на них компоненты давления перпендикулярны течению. На струйки тока, находящиеся в соприкосновении с препятствием Л, действует твердое тело с силой, составляющая которой в направлении потока равна — Р. По теореме Эйлера, результирующая всех давлений на жидкость равняется сумме  [c.33]

В соответствии с теоремой Эйлера о количестве движения результирующее давление на жидкость, ограниченную некоторой поверхностью, равно сумме результирующей массовой силы, действую-  [c.15]

Дальнейшее развитие учения о движении жидкости и обобщение законов гидростатики дали возможность членам Российской академии наук в Санкт-Петербурге Леонарду Эйлеру (1707—1783 гг.) и Даниилу Бернулли (1700—1782 гг.) разработать теоретические основы гидравлики и, таким образом, создать прочную теоретическую базу, позволившую выделить гидравлику в отдельную отрасль науки. Д. Бернулли, работая над проблемами математики и механики, посвятил ряд мемуаров вопросам движения и сопротивления жидкости. В 1738 г. им опубликован капитальный труд по гидродинамике, в предисловии к которому автор указал, что его труд полностью принадлежит России, и прежде всего ее Академии наук. В этой работе Бернулли дал метод изучения движения жидкости, ввел понятие гидродинамика и предложил известную теорему о запасе энергии движущейся частицы жидкости. Эта теорема носит теперь имя Д. Бернулли и лежит в основе ряда разделов гидравлики. Л. Эйлер первый дал ясное определение понятия давления жидкости и, пользуясь им, в 1755 г. вывел основные дифференциальные уравнения движения некоторой воображаемой жидкости, лишенной трения, так называемой идеальной жидкости. Эти уравнения впоследствии были названы его именем. На основе учения Л. Эйлера возникла родственная гидравлике наука — гидромеханика, также рассматривающая законы движения жидкостей, но на основе только математического анализа, тогда как гидравлика для изучения отдельных вопросов широко использует и экспериментальный метод.  [c.7]


Первый пример потенциального движения жидкости привел еще в середине XVIII в. Л. Эйлер. Последующее изучение кинематики сплошной среды, выполненное Коши и Стоксом, привело к появлению понятия вихря и к изучению вихревых течений. Ряд изящных и важных теорем о вихревых линиях и вихревых трубках был опубликован в 1858 г. Г. Гельмгольцем, привлекшим интерес исследователей к вихревым течениям. В этот же период было введено понятие циркуляции скорости и установлена связь циркуляции с потоком вихря. Гельмгольцу, в частности, принадлежит важная кинемати-74 ческая теорема о постоянстве потока вдоль вихревой трубки, из которой следует невозможность обрыва вихревых трубок внутри жидкости.  [c.74]

Во второй половине XIX в. появилось учение о вихреном двин<с-нии жидкости, создателем которого справедливо считают Гельмгольца, указавшего в 1858 г. основные свойства вихрей в идеальной жидкости. Само понятие вихря и его интерпретация, как угловой скорости вращения жидкого элемента в целом, были даны раньше Коши в 1815 г. и Стоксом в 1847 г. возможность движения без потенциала скоростей была указана Эйлером еще в 1775 г. Теория вихрей имеет обширную литературу, в которой тесно переплетаются вопросы гидродинамики с аналогиями в области электричества и магнетизма. Магнитные линии вокруг электрического проводника эквивалентны линиям тока вокруг вихревой нити (теорема Био — Савара служит основой как для расчета движения жидкости вокруг вихревых линий, так и для расчета магнитного поля вокруг электрического тока). Теория вихрей сыграла большую роль в развитии динамики атмосферы, теории крыла самолета, теории пропеллера и корабельного винта и др. Об этих приложениях, получивших особенное развитие в работах русских ученых (Н. Е. Жуковского — по вихревой теории винта и А. А. Фридмана — по вихрям в атмосфере), будет упомяпуто в следующем параграфе.  [c.26]

Одними из первых методом функций Ляпунова были решены задача Эйлера об устойчивости прямолинейной формы равновесия тонкого стержня постоянного сечения, находящегося под действием продольной постоянной нагрузки (Н. Г. Четаев, 1946) и задача об устойчивости круговой формы однородной гибкой нерастяжимой нити в отсутствие внешних сил (П. А. Кузьмин, 1948—1949). В обеих задачах введено счетное множество обобщенных координат системы, причем для второй из названных задач рассматривается обоснование перехода от конечного числа переменных к бесконечному введением гильбертова пространства. Построением функции Ляпунова была также решена задача об устойчивости эллипсоидов Маклорена вращающейся гравитирующей жидкости по отношению к конечному числу переменных, характеризующих простое, по Лиувиллю, движение жидкости (В. В. Румянцев, 1959). Применение теоремы Ляпунова о неустойчивости позволило строго доказать неустойчивость вихревых цепочек Кармана (Г. В. Каменков, 1934 Н. Е. Кочин, 1939).  [c.30]

Основываясь на законе сохранения живой силы, открытом для частного случая колебания маятника еще Гюйгенсом и получившем широ-кое распространение в первой половине XVIII в., Бернулли впервые изложил в Гидродинамике теорему, устанавливающую связь между давлением, уровнем и скоростью движения тяжелой жидкости. Теорема эта является фундаментальной теоремой гидродинамики. Согласно этой теореме, если в точках потока, находящихся на одном уровне, понижается скорость, то доллсно возрастать давление, — результат, который вначале казался парадоксальным. Действительно, в связи с ньютоновскими воззрениями па давление жидкости на обтекаемое тело, да и исследованиями самого Бернулли о давлении жидкости на преграду прочно установился взгляд о возрастании давления жидкости на тело при увеличении скорости набегания ее на тело. Это противоречие было легко устранено Эй(.аером, который с бо.пьшой отчетливостью разъяснил, что теорема Бернулли как гидродинамическая интерпретация закона живых сил верна лишь в том случае, если следить за движением частиц одной и той же струи. Принадлежащее Эйлеру ноясие1ше заключалось в следующих словах вся сложность понимания этого предложения устраняется, если считать, что здесь сравнение производится не между скоростями двух разных течений, а между разными скоростями вдоль данной струи, которая обтекает поверхность тела . Эти слова Эйлера заслуживают упоминания в любом руководстве но гидродинамике, так как и сейчас эта важная сторона теоремы Бернулли часто ускользает от учащегося.  [c.22]


Выражение под знаком градиента есть функция, зависящая толь ко от времени, и следовательно, справедливо равенство (3.5). Если дополнительно к условиям теоремы 2 предположить, чт движение жидкости установившееся, т.е. 5ф/Й s О, то интегра Коши (3.5) совпадет с интефалом Бернулли (3.3). Функцию g(0 этом случае следует рассматривать как постоянную во всей облас ти движения. Полученный интефал называется интефалом Бер нулли—Эйлера и отличается от интефала Бернулли тем, что по стоянная в правой части не зависит от выбора линии тока. j В качестве примера рассмотрим задачу об истечении несжи-1 маемой идеальной жидкости из отверстия малой площади в сосуде (рис. 64). Пусть уровень жидкости в сосуде Н, S — площадь поверхности цилиндрического сосуда, s — площадь сечения от-. верстия на глубине Н. Давление воздуха (поверхностные силы на свободной поверхности жидкости) равно р . Поле массовых сил есть поле силы тяжести f=-jge , — орт вертикали. Рассмотрим процесс истечения жидкости как безвихревое установившееся течение идеальной несжимаемой жидкости, прене гая понижением уровня жидкости на изучаемом интервале времени. Эти условия будут выполняться с достаточной степенью точности, если S s-и если с момента начала течения прошло некоторое время и тече- ние приобрело установившийся характер. Обозначим скорость понижения уровня жидкости в сосуде через v, а скорость истечения из отверстия — через V. Уравнение неразрывности имеет вид = sV, г интефал Бернулли—Эйлера представляется в форме  [c.262]

Пусть через Сть рх, дх обозначены площадь поперечного сечения, давление и скорость в точке Л через Ог, Рг, дг — соответствующие величины в точке В. По теореме Эйлера о количестве движения, полное действие давления на жидкость в трубке А В состоит из нормальных сил в точке Л и е<Тг в точке В, причем обе силы направлены по внешним нормалям. Однако силы, обусловленные давлениями в точках А и В, равны рхОх и ргОг, и обе силы направлены по внутренним нормалям.  [c.32]

Согласно теореме, доказанной в гл. 1, течение невязкой несжимаемой жидкости, в формировании которого участвует три моды, описывается уравнениями Эйлера движения обычного гироскопа. С такими уравнениями совпадает, в частности, простейшаяХмодель двумерной гидродинамики, предложенная Лоренцем [154]. Трехмодовая аппроксимация нередко применялась в гидродинамике. Например, задача о свободном жидком вращении внутри эллипсоида ( 2 гл. 1) нашла применение в теории приливов [79, 240] и при изучении динамики тел с полостями, заполненными жидкостью [109, 179, 207]. К числу других примеров относятся задачи о резонансном взаимодействии планетарных волн ( 6 гл. 2), о плоском течении жидкости под действием периодической силы ( 4 гл. 2) и некоторые другие, о которых речь пойдет ниже.  [c.56]

Проблема хаотическогс движения точечных вихрей на плоскости тесно связана с общим вопросом представляют ли уравнения Эйлера для плоских течений идеальной жидкости интегрируемую динамическую систему Для случая гладкого нячального распределения завихренности в некоторых областях на плоскости частично ответ на этот вопрос дает теорема Волибнера [265], утверждающая, что при таких условиях поле завихренности не будет иметь сингулярностей за конечное время. В случае точечных вихрей такая сингулярность поля завихренностей, согласно уравнению (3.2), существует в системе и в начальный момент времени. Поэтому вопрос о построении гладких решений для точечных вихрей требует дальнейшего изучения.  [c.158]


Смотреть страницы где упоминается термин Эйлера теорема (о движении жидкости : [c.317]    [c.21]    [c.32]   
Курс теоретической механики (2006) -- [ c.0 ]



ПОИСК



Теорема Эйлера

Теорема движения

Эйлер

Эйлера эйлеров

Эйлерова форма законов сохранения массы и энергии, теоремы количеств движения н момента количеств движения при стационарном движении идеальной жидкости



© 2025 Mash-xxl.info Реклама на сайте