Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потери гистерезисные энергии деформации

Полином устойчивый 451 Потери гистерезисные энергии деформации 166 Преобразование квадратичной формы 48  [c.586]

Метод разделения системы на составляющие элементы предполагает последующее решение задачи на ЭЦВМ с использованием аппарата линейной алгебры. Поэтому уравнения, описывающие движение элементов и деформацию связей, должны оставаться линейными, а гистерезисные потери энергии в связях необходимо заменять энергетически эквивалентными упруговязкими потерями.  [c.59]


Существенную долю в общем балансе энергии, рассеиваемой механизмом с упругими связями в процессе его колебаний, занимает работа сил внутреннего трения в материале упругих связей, или, как ее называют, гистерезис-ные потери. Наличие гистерезисных потерь объясняется особенностями диаграммы многократного нагружения и раз-гружения практически любого машиностроительного материала. Подобная диаграмма представлена на рис. 3.17, а. Как на ней показано, при одной и той же величине деформации напряжение оказывается несколько большим, когда оно растет, чем когда оно убывает. Такая картина остается справедливой даже в том случае, если максимальное напряжение не превосходит предела пропорциональности. Полученная таким образом замкнутая кривая называется петлей гистерезиса. Площадь, ограниченная петлей гистерезиса, характеризует количество энергии, рассеиваемой единицей объема материала за один цикл. При повторном растяжении  [c.99]

Модуль упругости лежит в пределах I —10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой) коэффициент Пуассона 0,4—0,5, тогда как для металла эта величина составляет 0,25—0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При нормальной температуре время релаксации может составлять 10 с и более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок) это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.  [c.482]

Из большого числа вариантов теорий неупругости наилучшее совпадение с наблюдаемыми в экспериментах вибрационными явлениями обнаруживает теория пластических деформаций. На основе проведенных экспериментальных работ [73] была выдвинута гипотеза, в соответствии с которой внутреннее трение при значительных напряжениях представляет эффект микропластических деформаций. Имеется указание о том, что внутреннее трение должно изучаться с использованием уравнений теории пластичности Мизеса — Генки. Однако эта рациональная идея была реализована только для случая циклического деформирования в условиях одноосного напряженною состояния и при частном виде кривой нагружения материала. В результате была предложена формула гистерезисной петли, по которой потери энергии в материале за цикл колебаний зависят по степенному закону от амплитуды деформации или напряжения.  [c.151]


Для оценки свойств по глубине трущихся материалов представляет интерес недавно разработанный метод микромеханических испытаний с регистрацией кинетики непрерывного вдавливания индентора [4. Метод позволяет регистрировать при непрерывном вдавливании индентора диаграмму нагрузка—глубина отпечатка, что качественно аналогично диаграмме напряжение—деформация при растяжении (сжатии) или диаграмме глубина отпечатка — время. Полученные диаграммы дают возможность выявлять кинетические закономерности изменения микропластической деформации на участке внедрения, оценивать упругие и релаксационные свойства материала и другие особенности изменения структуры и свойств материалов при различных условиях поверхностной обработки, процессах трения, резания и т. д. Важная особенность разработанного метода — возможность получения ряда количественных критериев оценки свойств поверхностных слоев. К ним относятся модуль Юнга, гистерезисные потери при разгружении и повторном нагружении, средняя скорость деформации материалов под индентором, активационный объем и эффективная поверхностная энергия. Перечисленные параметры свидетельствуют о перспективности применения непрерывного  [c.88]

Как видно, здесь мы имеем существенное отличие характера поглощения упругих волн по сравнению с жидкостями и газами, где поглощение пропорционально квадрату частоты. Такой характер поглощения в твердых телах принято объяснять тем, что при прохождении упругой волны в твердом теле, упругость которого несовершенна, возникают потери на гистерезис. На рис. 277 схематически была представлена кривая, представляющая зависимость напряжения от деформации из этой кривой видно, что деформация точно не повторяется в течение цикла образуется петля, так называемая петля гистерезиса. Площадь этой петли характеризует ту механическую энергию, которая теряется в форме тепла ). На приведенном рисунке показан случай преувеличенной величины гистерезисной петли. В действительности, если бы для таких хорошо проводящих звук тел, как плавленый кварц, стекло и пр., мы какими-либо статическими методами, т. е. прикладывая какую-либо нагрузку к образцу и снимая ее, измеряя при этом величины деформации, попытались бы найти различие в поведении кривой деформации в зависимости от напряжения, то никакой гистерезисной петли мы не обнаружили бы. Этот эффект при малых деформациях, которые обычно имеют место при распространении упругих волн, чрезвычайно мал. Однако для упругих волн достаточно высокой частоты, при прохождении импульса давления, каждый слой материала поочередно совершает описанный выше цикл, число которых на ультразвуковых частотах составляет миллионы в секунду. Поэтому хотя сама гистерезисная петля может иметь ничтожную площадь, при большом числе циклов в секунду эффект накапливается и становится существенным. Из приведенных соображений ясно, что при гистерезисе потери должны быть пропорциональны числу циклов в секунду, т. е. поглощение упругих волн при этом должно быть пропорционально частоте, что стоит в согласии с приведенными выше экспериментальными данными.  [c.478]

Потери от упругого гистерезиса. При работе подшипника шарики и кольца в нагруженной зоне испытывают необратимые деформации в зонах контакта. При этом затрачивается энергия, которую можно охарактеризовать моментом трения, расходуемым на преодоление гистерезисных потерь  [c.61]

Механические ультразвуковые колебания к месту сварки передаются от инструмента через толщу материала заготовки с внешней ее стороны. Процесс организуется так, чтобы не допустить значительного проскальзывания инструмента и опоры по поверхностям заготовок. Прохождение колебаний через металл деталей сопровождается рассеянием энергии за счет внешнего трения между свариваемыми поверхностями в начальный период (плоский источник теплоты) и внутреннего трения в объеме материала, находящегося между инструментом и опорой в условиях интенсивных ультразвуковых колебаний после образования зоны схватывания (гистерезисные потери, объемный источник теплоты). Это проявляется в повышении температуры в соединении до значений (0,4...0,7)7 пл. Повышение температуры, в свою очередь, облегчает пластическую деформацию. Наложение ультразвуковых колебаний вносит определенную специфику в поведение металла и кинетику процесса сварки в  [c.507]


С учетом формулы (4.30) получаем, что коэффициент поглошения пропорционален частоте. Однако поглощение также пропорционально амплитуде и должно быть пренебрежимо мало для деформаций, характерных для сейсмических волн. Следовательно, сухое трение не может рассматриваться как существенная причина поглощения. Эксперименты на прижатых друг к другу сферах подтверждают наличие кольцевых поверхностей скольжения [Юб] и гистерезисную форму кривых. В этих экспериментах использовались большие касательные силы, вызывающие сильные деформации, при этом относительная потеря энергии за один период оказалась независящей от амплитуды.  [c.136]

Во-вторых, коэффициент гистерезисных потерь при качении не совпадает с частью энергии, рассеиваемой в условиях простого цикла растяжения-—сжатия. Деформационный цикл при контакте качения, проиллюстрированный на рис.. 9.1, заключается во вращении главных осей деформации при прохождении элемента между точками В, С и О с очень малым изменением полной упругой энергии. Гистерезисные потери для таких условий не могут быть получены из данных по одноосному напряженному состоянию, хотя правдоподобные гипотезы были сделаны (и не без успеха) для резины [141].  [c.326]

Циклическое нагружение серого чугуна, в противоположность идеально упругому телу, совершается с потерей энергии, которая превращается в теплоту, и таким образом колебания гасятся (амортизируются). Графически величина потери энергии определяется площадью петли гистерезиса на кривой напряжение — деформация (рис. 26). Чем больше площадь гистерезисных петель, тем больше способность чугуна превращать энергию вибрации в тепло, выделяемое вследствие внутреннего трения. Включения пластинчатого графита в сером чугуне действуют подобно острым надрезам и вызывают повышенное поглощение энергии на внутреннее трение, связанное с пластическими микросдвигами (у надрезов) даже при самых малых напряжениях. Затухание вибрации в стали, высокопрочном и сером чугуне показано на рис. 27, а связь между прочностью и циклической вязкостью различных материалов показана на рис. 27, бив [3]. Циклическую вязкость обычно выражают в процентах как удвоенный логарифмический декремент затухания колебаний )Js = 26.  [c.73]

Феноменология и реологические уравнения процесса дробления. С учетом приведенных закономерностей процесса дробления в вибрациоиноГ[ дробилке разработана феноменологическая модель дробимой горной массы (рис. 11). Модель представляет собой трехмассиое упруговязкопластическое реологическое тело. Общая масса куска т сосредотачивается в трех элементах модели — центральном ядре массой (1 — I) т, не участвующем в колебаниях, и двух колеблющихся массах. Так как кусок дробимою материала представляет o6oii систему с распределенными инерционными, упругими и пластическими свойствами и в процессе дробления по нему распространяется волна, то в реологической модели с дискретными массами для описания этого сложного процесса принимают приведенную массу т, участвующую в колебаниях и составляющую лишь часть общей массы куска т. Масса состоит из массы A,gm, находящейся в контакте со щекой, и массы (1 —Я) ёлг, свободно колеблющейся. Упругие деформации модели воспроизводятся упругими элементами с коэффициентом жесткости к. Рассеяние энергии (гистерезисные потери)  [c.394]

Располагая теперь некоторыми сведениями о свойствах монокристаллов, мы можем лучше понять и результаты испытаний поликристаллических образцов обычного типа. Юинг и Розен-хайн ) поставили весьма интересные опыты на растяжение образцов из полированного железа. Микроскопическое исследование поверхности металла обнаружило, что даже при сравнительно низких растягивающих нагрузках на поверхности некоторых зерен появляются полосы скольжения . Эти полосы свидетельствуют о том, что по определенным кристаллографическим плоскостям в этих зернах происходит скольжение. Поскольку упругие свойства в отдельном кристалле могут резко отличаться в разных направлениях и поскольку отдельные кристаллы размещаются в общей массе беспорядочно, постольку напряжения в растягиваемом поликристаллическом образце распределяются неравномерно, и скольжение может произойти в отдельных наиболее неблагоприятно ориентированных кристаллах прежде, чем среднее растягивающее напряжение достигнет значения предела текучести. Если такой образец разгрузить, то кристаллы, подвергшиеся скольжению, не смогут вернуться полностью к своей первоначальной форме, в результате чего в разгруженном образце останутся некоторые остаточные напряжения. Некоторое последействие в образце может быть приписано именно этим остаточным напряжениям. Пластическая деформация отдельных кристаллов содействует также потерям энергии при последовательных загружениях и разгрузках и увеличивает площадь гистерезисной петли, о которой шла речь на стр. 426. Если этот уже испытанный образец подвергнуть растяжению вторично, то зерна, в которых имело место скольжение, не будут пластически деформироваться, пока растягивающая нагрузка не достигнет значения, отмеченного при первом загружении. Лишь когда вторичная загрузка превысит это значение, вновь начнется скольжение. Если образец после предварительного растяжения подвергнуть сжатию, то сжимающие напряжения в сочетании с остаточными напряжениями (возникшими при предварительном растяжении) повлекут за собой текучесть в наиболее неблагоприятно ориентированных кристаллах, прежде чем среднее сжимающее напряжение достигнет того значения, при котором в первоначальном состоянии образца в нем возникают полосы скольжения. Поэтому цикл испытания на растяжение повышает предел упругости при растяжении, но при этом  [c.436]

В режиме o-q = onst при разогреве повышается амплитуда деформации В(, и возрастает тепловыделение. Теплоотвод с поверхности разогретого образца происходит по закону Ньютона — Рихмана [23], а теплоприход из-за превращения механической энергии в тепловую (внутренний источник тепла) в линейном приближении описывается уравнениями (1.3.13) и (1.3.14). Графически связь между напряжением о и деформацией е при гармоническом режиме в этом случае изобразится замкнутой эллиптической петлей, площадь которой пропорциональна механическим потерям цикла и поэтому носит название гистерезисной петли (рис. 3.3.9). Фактические законы для нелинейных вязкоупругих систем и при нестационарном теплообмене, когда коэффициент теплоотдачи а — функция температуры и других условий теплообмена, оказываются сложнее. Однако качественно явление сохраняет тот же характер, что и для рассматриваемого простейшего случая, который наблюдался при гармоническом нагружении пластмасс С. Б. Ратнером и В. И. Коробовым [412] и иллюстрирован на рис. 3.3.10.  [c.163]


Рассеивание энергии при колебаниях масс троллейбуса происходит также за счет неизбежного трения между элементами подвески, гистерезисных потерь в деформируемом материале, при вертикальных деформациях катящейся шиньг Сила трения в элементах подвески может рассматриваться как постоянная. Она определяется главным образом типом и конструкцией упругого элемента и направляющего устройства. При деформации пружин и баллонов пневматических подвесок трение практически отсутствует. Трение в рычажной подвеске определяется числом шарниров и их конструкцией. При этом большее трение создают шарниры с гладкими пальцами, меньшее - с резьбовыми пальцами, а у шарниров с шариковыми, роликовыми или резиновыми опорами они практически отсутствуют.  [c.213]

Дифференциальные уравнения колебаний необходимо составлять с учетом рассеяния энергии колебании. Рассеяние энергии колебаинн может происходить за счет гистерезисных потерь вследствие внутреннего трения, за счет потерь на деформацию грунта, в том числе в перегрузочных устройствах, на транснортсрпон ле гге и грунта основания. Рассея-  [c.374]


Смотреть страницы где упоминается термин Потери гистерезисные энергии деформации : [c.12]    [c.256]    [c.99]   
Теория колебаний (2004) -- [ c.166 ]



ПОИСК



Потери энергии

Энергия гистерезисная

Энергия деформации



© 2025 Mash-xxl.info Реклама на сайте