Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дерево Расчета

Закрома для хранения шихтовых материалов строят Б закрытых складах, заглубленными на 2—3 м ниже уровня пола, в открытых складах — надземными. Стенки закромов изготовляют из железобетона с обкладкой деревом. Расчет размеров закромов, силосов  [c.195]

Дерево Конструирования 4, 10 Дерево Расчета 259 Деформированный вид 258  [c.313]

Схема алгоритма компоновки приводов подач рабочих органов станков с ЧПУ (рис. 1.15) включает блок 4 — генератор структур приводов (датчик чисел в двоичном коде). Согласно конкретной структуре производится упрощенный расчет узлов, соответствующих полученной структурной формуле (блок 5). Определяется погрешность полученной неполной компоновки привода (блок 9) и прогнозируется погрешность Д компоновки с учетом элементов, находящихся на остальных уровнях дерева вариантов (блок 8). Если погрешность компоновки больше заданной с учетом прогнозируемой погрешности, то производится отсечение структур приводов в блоке 13. Как только будут исчерпаны все N вариантов приводов (с учетом отсечений), на печать выводятся полные структурные формулы приводов, рассчитанные конструктивные параметры их элементов и значения погрешностей.  [c.36]


Такие расчеты называются расчетами на сдвиг или срез (для дерева и бетона применяется также термин скалывание). Примером соединений, рассчитываемых на срез, являются заклепочные, болтовые и сварные соединения.  [c.83]

Для стали нормативный коэффициент запаса устойчивости п . принимается в пределах от 1,8 до 3, для чугуна — от 5 до 5,5, для дерева — от 2,8 до 3,2. Указанные значения коэффициентов запаса устойчивости принимаются при расчете строительных конструкций. Значения п ., принимаемые при расчете элементов машиностроительных конструкций (например, ходовых винтов металлорежущих станков), выше указанных так, для стали принимают Я , = 4-н5. Чтобы лучше учесть конкретные условия работы сжатых стержней, рекомендуется применять не один общий коэффициент запаса устойчивости, а систему частных коэффициентов, так же как и при расчете на прочность.  [c.266]

Рисунок 2.25 - Дерево неполадок реактора синтеза [32] Разработанное "дерево неполадок" зачастую дополняется вероятностными данными с учетом логических соотношений между "событиями" для расчета вероятности возникновения "верхнего нежелательного" события. Рисунок 2.25 - Дерево неполадок реактора синтеза [32] Разработанное "дерево неполадок" зачастую дополняется вероятностными данными с учетом логических соотношений между "событиями" для расчета вероятности возникновения "верхнего нежелательного" события.
В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]


Величина критического напряжения Окр играет такую же роль, как предел прочности ов при расчетах на прочность. Нельзя допускать, чтобы в сжатых стойках возникали напряжения, равные критическим. Поэтому необходимо от критических напряжений, определяемых при большой гибкости по формуле Эйлера, а при малой — по формуле Ясинского — Тетмайера, перейти к допускаемым напряжениям при продольном изгибе. Для этого критическое напряжение делится на коэффициент запаса устойчивости к, который для металлов равен 1,86 для дерева — 2,5 и более. Этот коэффициент учитывает не только запас устойчивости, но и возможный эксцентриситет приложения нагрузки, небольшое начальное искривление стержня, неоднородность материала и др.  [c.298]

Большие эксцентриситет и начальная кривизна рассчитываются специально, малые же, не поддающиеся расчету и зависящие от гибкости стержня, учитываются дополнительным коэффициентом запаса, т. е. упомянутым увеличением коэффициента запаса на устойчивость. Принимают для стали [rzy]=l,8 — 3 для чугуна [Лу 1=5 — 5,5 для дерева [/iyj=2,8 — 3,2.  [c.257]

Здесь ф — коэффициент уменьшения основного допускаемого напряжения при расчете на устойчивость. Этот коэффициент для каждого материала можно вычислить при всех значениях гибкости I и представить в виде таблицы или графика зависимости ф от к. Значения коэффициента ф для сталей, чугуна и дерева приведены в табл. 22. Пользуясь аналогичными таблицами, можно достаточно просто рассчитывать стержни на устойчивость.  [c.574]

Внутриквартальную канализационную и водосточную сеть прокладывают по газонам на расстоянии не менее 2 м до стволов деревьев с таким расчетом, чтобы ремонт и строительство полупро-ходных каналов не вызывали их нарушения.  [c.406]

При использовании кривых, полученных Никурадзе, для практических расчетов встретились, однако, значительные трудности. Применяемые в технике материалы (металлы, дерево, камень) отличаются друг от друга не только средней высотой выступов шероховатости. Опыты показывают, что даже при одной и той же абсолютной шероховатости (средняя высота выступов шероховатости к) трубы из разного материала могут иметь совершенно различный коэффициент гидравлического трения Я в зависимости от формы выступов, густоты и характера их расположения и т. д. Учесть влияние этих факторов непосредственными измерениями практически невозможно. В связи с этим в практику гидравлических расчетов было введено представление об эквивалентной равнозернистой шероховатости кэ. Под эквивалентной шероховатостью понимают такую высоту выступов шероховатости, сложенной из песчинок одинакового размера (шероховатость Никурадзе), которая дает при подсчетах одинаковый с заданной шероховатостью коэффициент гидравлического трения. Таким образом, эквивалентная шероховатость трубопроводов из различных материалов не определяется непосредственными измерениями высоты выступов, а находится при гидравлических испытаниях трубопроводов.  [c.174]

Для деревянных балок расчет на прочность по максимальным касательным напряжениям может иметь решающее значение, зак как дерево плохо сопротивляется скалыванию вдоль волокон, а потому даже сравнительно небольшие касательные напряжения, возникающие в нейтральном слое деревянных балок (значительно меньшие нормальных напряжений в поперечных сечениях), могут вызвать их разрушение.  [c.272]

В инженерных расчетах практически считают, что величина k зависит только от материалов касающихся тел. Ориентировочные (средние) значения коэффициентов трения качения для мягкой стали по мягкой стали к = 0,05 мм, для закаленной стали по закаленной стали k = 0,01 мм, для дерева по стали k = 0,3-4-0,4 мм.  [c.88]

Травильные, промывные и гальванические ванны изготавливают из отдельных заготовок, свариваемых между собой. Толщину стенок ванны, а также необходимость устройства ребер жесткости или конструктивного выполнения ванны в виде вкладыша, размещаемого в каркасе из дерева, металла, железобетона, определяют в кал<дом конкретном случае расчетом, исходя из габаритов ванны и условий ее эксплуатации.  [c.195]


Имеются, однако, анизотропные материалы. Анизотропно дерево. Анизотропна бумага. Существует анизотропия металлов, возникающая в результате предварительной прокатки, вытяжки, и наклепа. В некоторых случаях это обстоятельство должно учитываться при расчетах.  [c.17]

Расчеты на кручение. Каждый, вероятно, закручивал тонкий прутик, срезанный с дерева. Взяв руками за концы и повернув их в разные стороны, мы производим скручивание прутика.  [c.213]

Постоянная k у судовых винтов равна 14+18, у воздушных винтов из дерева или из магниевых сплавов 0,12, из дуралюмина 0,2. Судовые винты с узкими лопастями, воздушные винты и маховые колеса со спицами являются упругими телами, что необходимо учитывать при расчете крутильных колебаний систем, в которых эти агрегаты применяются [141].  [c.298]

Для описания связанных гидравлических и механических систем могут быть использованы методы расчета электрических цепей и понятия теории четырехполюсников для гидравлических и механических систем [И, 12]. Особенно удобным и наглядным оказывается метод построения графов распространения сигнала [13] с последующим использованием этих графов для создания программы аналоговой вычислительной машины [14]. Непосредственное построение графов распространения сигналов основано на топологических свойствах рассматриваемых цепей и использует понятие графов отдельных систем с выбором дерева для каждого отдельного графа [15, 16].  [c.42]

Коэфициенты трения для дерева по чугуну (или стали) для муфт трения можно принимать при расчете в пределах 0,25—0,3.  [c.550]

Поэтому следующим этапом расчета является составление теоретико-множественной модели в виде структурного числа, представляющего собой сумму всех деревьев графа. Известно [6], что для графа G, который является геометрическим изображением структурного числа А, справедливо соотношение  [c.124]

По предельному состоянию ведется также и расчет соединений в деревянных конструкциях (врубок, шпонок н др.), работающих тоже на сдвиг и смятие. Существенной особенностью дерева является анизотропность древесины, вследствие чего она оказывает различное сопротивление сдвигу и смятию в зависимости от направления приложенного к рабочему элементу усилия по отношению к направлению волокон. Дерево лучше сопротивляется срезу и смятию вдоль волокон, чем поперек или под углом к ним, что учитывается соответствующими коэффициентами условий работы и др. Методы расчета подобных соединений приводятся в специальных курсах ).  [c.159]

Анализ приведенных данных показывает, что в худшем случае вклад сдвиговых деформаций почти в 12 раз больше, чем чистого изгиба. В лучшем случае при соотношении расстояния между опорами к ширине, равном 10 1, и заполнителе из бальзового дерева вклад сдвиговых деформаций составляет V (15%) от деформаций изгиба. Вклад сдвиговых деформаций заполнителя при расчете напряжений, деформаций и предельных нагрузок при продольном изгибе рассматривается Алленом в работе [11].  [c.200]

Такие материалы, как дерево, композитные материалы и т.п. обладают мепьшей степенью однородности. Но в большинстве этих случаев расчеты, основывающиеся на гипотезе однородности, дают удовлетворительные результаты.  [c.11]

OSMOSWorks Manager. Нажмите его. Откроется Дерево Расчета, котор( начале содержит только элемент Параметры.  [c.258]

Требуется а) подобрать из расчета на прочность болт с метрической резьбой, если [а]р = 85 Мн1м (болт рассматривать как незатянутый) б) определить диаметр D шайбы, подкладываемой под головку болта, если допускаемое напряжение смятия для дерева [ст = 6,0 Мн/м" и внутренний дна-метр шайбы на 1 мм больше диаметра  [c.65]

Изложенные теории прочности (как и рассматриваемые далее) неприменимы для анизотропньгх материалов, например для дерева, так как при расчете деревянных конструкций следует учитывать направление усилий по отношению к волокнам древесины.  [c.346]

Полная теория скачкообразного скольжения с учетом зависимости силы кинетического трения от скорости была развита автором книги совместно с Д. М. Толстым и В. Э. Пушем. Английский физик Боуден и его сотрудники, много занимавшиеся исследованием этого явления, приписывали скачки при трении металлов образованию металлических мостиков в результате сваривания металлов под влиянием тепла трения, развиваюш,егося в точках контакта. Точным расчетом было доказано, что такое объяснение неправильно. В то же время оно неспособно объяснить скачки при трении неметаллических тел, таких, например, как дерево, и, наконец, оно является излишним, так как одна уже зависимость силы трения от продолжительности контакта способна количественно объяснить все особенности явления.  [c.180]

А. Фёпля (1854—1924) создали основы для определения усилий в стержнях ферм. (Этими методами расчета пользуются и сегодня.) Работы упомянутых авторов были опубликованы в 1863—1880 гг. > Применение сквозных конструкций для железнодорожных мостов (сначала из дерева, потом, начиная примерно с 1840 г., из чугуна и кованого железа, а позже из стали) в Европе и США привело к возникновению несущих систем, которые соответствовали интуитивному пониманию передачи нагрузок и упрощенному пониманию напряжений.  [c.138]

Лазерный луч с большим успехом применяется для резки неметаллических материалов, таких, как пластмасса, стеклопластики, композиционные материалы на основе бора и углерода, керамика, резина, дерево, асбест, текстильные материалы и т. д. Данный ассортимент материалов, как правило, обладает меньшей температуропроводностью (k < 0,01 см /с), чем металлы, и поэтому удельное энерговложение для процесса резки значительно меньше. Для неметаллов легко выполняется условие Uod/k 1, при котором справедливо приближение быстродвижущегося теплового источника и применима формула (105) для расчета температуры в наиболее горячей точке. В то же время при скоростях резки Uq > 1 см/с и ширине реза не более 0,5 мм слои толщиной d > 0,5 мм можно считать в теплофизическом смысле полубез-граничной средой. Поэтому пороговая плотность потока, необходимая для начала резки неметаллов, слабо зависит от толщины листа и с ростом скорости перемещения источника увеличивается как  [c.139]


К звеньям подобного рода относятся кронштейны, стойки механизмов, болтовые соединения деталей из различных материалов (дерево, железо), фланцевые соединения на упругих прокладках и т. п. Очень часто указанные звенья имеют переменную жесткость. В этих случаях аналитический расчет приводит к довольно сложным формулам. Что касается приближенных решений Л. Франциуса и других авторов, то точность их весьма невелика. О графических методах расчета балок в технической литературе говорится только в общих чертах. Здесь мы приводим один из примеров приложения метода весовой линии к расчету указанных балок. Возьмем-общий случай, когда сила Р , действующая на балку переменной жесткости А В, расположена на расстоянии с от края А (фиг. 60). При данном расположении силы Pq края стойки Л и Б опустятся на глубину в упругое основание на разные величины Уа а Уь когда EJ = О, то опускание произойдет по трапеции F =  [c.107]

Расчет на прочность по касательным напряжениям может иметь решающее значение для деревянных балок, так как дерево плохо сопротивляется скалыванию вдоль волокон. Так например, для сосны расчетное сопротивление растяжению и сжатию при изгибе ) = 13 МПа, а при скалывании вдоль волокон / з = 2,4МПа. Условие прочности по касательным напряжениям для деревянной балки прямоугольного сечения с учетом формулы (7.30) можно записать в виде  [c.153]

Особую группу среди решеток с регулярной топологией составляют псевдорешетки, не содержащие циклических конфигураций (решетки Бете или деревья Кайлея). Разработаны методы рандомизации решеток, в результате использования которых, варьируя параметр рандомизации, можно получить целый спектр рандомизированных решеток. Широко применяются случайные решетки, представление о которых введено в работах А. Н. Колмогорова 1937 г. по расчету скорости кристаллизации в среде с хаотическим распределением затравки.  [c.22]

Большинство лекторов, по моим наблюдениям, начиная рассказ о хрупких разрушениях в условиях неравномерного нагрева, приводят пример стакана, лопнувшего после того, как в него был налит горячий чай. Тела при нагревании, как всем известно, расширяются, п в стакане внутренние нагретые слои давят на еш,е холодные внешние, появляются растягивающие напряжения, которые могут стать критическими для небольшой царапины на внешней иоверхности стакана. Подобные разрушения могут встретиться и в серьезной инженерной практике, как, наирпмер, в уже описанной нами аварии остывшего на сильном морозе резервуара, в который но небрежности обслуживающего персонала была налита горячая фосфорная кислота (рпс. 6). Хрупкие разрушения от внутренних температурных напряжений могут происходить не только при быстром нагревании, но и при быстром охлаждении. Скажем, в лесу в сильный мо-роз довольно часто разрушаются стволы деревьев (особенно дубов), образование трещин — морозобоин сопровождается резким, похожим на выстрел звуком. Внезапное охлаждение возникает также н при аварии ядерного реактора, когда жидкость системы охлаждения попадает на нагретые элементы конструкции. Расчеты оптимальных характеристик, гарантирующих отсутствие разрушения в такой ситуации, являются обязательными при проектировании ядерных силовых установок.  [c.174]

Принцип работы такого станка заключается в следующем. Специальная оправка с зак])еп.тен,иым на ней зубчатым колесом, или триб 1 (фиг. 165 устанавливается своими цапфами в углубление подушек 2, укрепленных на супорте станка 5. К трибу прижимается полировальник (полпровочный диск) 4. Полировальник представляет собой диск, сделанный кз мягкого свинцового сплава или из твердого сорта дерева с нарезанной на боковой поверхности винтовой канавкой. Супопт устанавливается с таким расчетом, чтобы  [c.202]

В начале XIX в. в России родилась новая наука — технология. В основу ее легли достигнутые в ХУП1 в. успехи по взаимозаменяемости узлов при изготовлении и сборке оружия. Положения этой науки сформулировал академик В. М. Севергин, на десятки лет опередив западных машиностроителей. В 1870 г. русский профессор И. А. Тиме положил начало науке обработки. металлов. Он раскрыл сущность процесса резания, объяснил характер образования, строгние и усадку стружки, дал формулу для подсчета действующих сил. Спустя шесть лет его соотечественник, профессор артиллерийской академии А. В. Гадолин, исходя из оптимальной скорости резания, предложил геометрический ряд коробок скоростей, ныне принятый во всем мире. Уже будучи академиком, он обосновал общую теорию упругости и сопротивления материалов, дал расчет многослойных артиллерийских стволов и труб на прочность, разработал курс технологии механической обработки металлов и дерева.  [c.4]

Если контейнеры выпускаются серийно, то их стоимость Ц . принимается по прейскурантам или заводской калькуляции. Часто при выборе рационального способа перевозки приходится рассчитывать экономическую эффективность вновь создаваемых типов контейнеров. Проведенные расчеты позволили в первом приближении установить стоимость контейнера в зависимости от его типа, номинальной массы брутто и внутреннего (полезного) объема. При этом стоимость контейнеров, изготовленных из дерева и металла и целиком из металла, можно принять одинаковой, так как хотя дерево и дешевле металла, но изготовление дерево-люталлической ) онструкции более трудоемко. Это положение подтверждается практикой производства контейнеров. Расчетная стоимость их приведена в табл. 35.  [c.155]


Смотреть страницы где упоминается термин Дерево Расчета : [c.8]    [c.90]    [c.130]    [c.147]    [c.219]    [c.53]    [c.222]    [c.32]    [c.58]    [c.258]    [c.15]   
Самоучитель SolidWorks 2006 (2006) -- [ c.259 ]



ПОИСК



Дерево



© 2025 Mash-xxl.info Реклама на сайте