Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия восходящая диффузия

В изученном интервале изменения скорости развития трещин средний коэффициент диффузии был принят равным 1 10 см сек, т. е. значительно более высоким, чем в уравнении (7), в связи с существенным влиянием поля напряжений. Таким образом, здесь В является приведенным коэффициентом для случая восходящей диффузии.  [c.65]

Если концентрация раствора выравнялась, то гетеродиффузия, подобно самодиффузии, становится хаотической по направлению. Известны случаи так называемой восходящей диффузии от. мест с низкой концентрацией к местам с высокой концентрацией. В каждом случае имеются особые причины для такого процесса (обычно неравномерное распределение третьего медленно диффундирующего элемента или неравномерное распределение напряжений), в основе которого также лежит стремление системы н уменьшению свободной энергии.  [c.320]


При высоком отпуске по границам зерна происходит более ускоренное (в сравнении с объемом зерна) карбидообразование и насыщение карбидной фазы марганцем, хромом, а также образование специальных карбидов (при соответствующей легированности). Этот процесс приводит к обеднению карбидообразующими элементами приграничных слоев зерна. При последующем медленном охлаждении (или во время выдержки при 500—520°С) происходит обогащение этих приграничных слоев фосфором, так как при температурах ниже 600°С фосфор приобретает стремление к диффузионному перераспределению в направлении участков, обедненных карбидообразующими элементами (явление восходящей диффузии), а диффузионная подвижность атомов фосфора при этих температурах достаточно велика. В итоге сталь охрупчивается из-за ослабления прочности межзеренных сцеплений.  [c.375]

Поэтому при больших степенях переохлаждения (низких температурах) вследствие уменьшения скорости диффузии (коэффициента диффузии D) (рис. 22) образование зародышей и их рост затруднены. Вследствие этого, число зародышей и скорость их роста уменьшаются. При очень низких температурах (большой степени переохлаждения) диффузионная подвижность атомов столь мала, что большой выигрыш объемной свободной энергии AF при кристаллизации оказывается недостаточным для образования кристаллических зародышей и их роста (ч. 3. = О, с. р. = 0). В этом случае после затвердения должно быть достигнуто аморфное состояние. Для металлов в обычных условиях реализуются лишь восходящие ветви скорости образования зародышей (ч. з.) и скорости роста (с. р.) (рис. 22 сплошные линии). Металл в этих условиях затвердевает раньше, чем достигаются степени переохлаждения, вызывающие снижение ч. з и с. р. Скорость образования зародышей и линейная скорость роста кристаллов определяют скорость кристаллизации. Средняя скорость изотермической кристаллизации о с увеличением степени переохлаждения, как и ч. 3. и с. р. сначала растет, достигает максимума, а затем падает (рис. 22).  [c.35]

В многокомпонентных системах, каковые представляют собой современные технические сплавы, движущей силой диффузионного перераспределения элементов служат не градиенты их концентраций, а градиенты химических потенциалов элементов. Последний определяет изменения свободной энергии локального объема твердого раствора или фазы данного состава при добавлении одного моля диффундирующего элемента. В свою очередь, химический потенциал будет зависеть от термодинамической активности элемента, определяемой его концентрацией и взаимодействием с другими элементами, находящимися в растворе. Одни из них могут повышать, другие — понижать активность диффундирующего элемента. Диффузия элемента идет от зон, где его активность выше, в зоны, где она ниже. В этом случае возможна так называемая восходящая диффузия, при которой поток элемента направлен против градиента концентраций, т. е. в сторону увеличения концентрации элемента. При этом на первом этапе пребывания сплава при высоких температурах возможно усиление МХИ некоторых элементов, а затем после перераспределения других элементов — выравнивание их концентрации по объему.  [c.508]


Общая феноменологическая теория диффузии позволяет объяснить явление восходящей диффузии, при которой диффузионный поток течет от мест с меньшей концентрацией диффундирующих атомов li местам с большей их концентрацией. Из формулы (23,38) следует, что поскольку Let > О, то такой случай реализуется, если  [c.252]

Неравномерное протекание деформации при наклепе создает микроскопический градиент напряжений, который по закону восходящей диффузии приводит к ускорению диффузионных процессов.  [c.24]

Обнаруженная обратная зависимость прочностных свойств от скорости активного растяжения при исследовании основного металла и металла сварного шва представляет особый интерес. Проявление такой зависимости подтверждает принципиальную важность исследования физико-механических свойств материалов в процессе облучения при температурах 0,3—0,47 пл, когда определяющими считаются кратковременные, а не длительные прочностные свойства. Аномальное поведение основного металла при флюенсе 0,5 10 нейтр. см- и металла сварного шва при флюенсах 0,5 10 и 2 10 нейтр. см- связано, вероятно, с переходом от дислокационно-субструктурного механизма деформационного упрочнения в необлучаемых образцах к диффузионно-дислокационному механизму в процессе облучения. Последний обусловлен диффузионной релаксацией напряжений в деформируемых материалах и проявляется в виде обратной скоростной зависимости физико-механических свойств [4]. Проявлению действия механизма диффузионно-дислокационного упрочнения способствует миграция избыточных точечных дефектов, образующихся при облучении. Необходимым условием диффузионно-дислокационного упрочнения является также постоянство скорости деформирования, обеспечивающее равенство между внутренним сопротивлением деформированию и прилагаемой растущей нагрузкой [4]. Как показано в [5], при этом происходит перераспределение примесей в неоднородном поле внутренних напряжений и их релаксация вследствие направленной (восходящей) диффузии. Такое перераспределение, наряду с процессами микротекучести и диффузионного залечивания очагов разрушения, повышает структурную однородность решетки и лежит в основе программного упрочнения кристаллических тел [4]. Характерно, что обратная скоростная зависимость прочностных свойств  [c.109]

Она вызывает дополнительное локальное расплавление основного металла, который не может участвовать в турбулентном перемешивании ванны из-за высокой вязкости кристаллизующегося шва у стенок ванны. Этот нафев стенок ванны вызывает преимущественное оплавление границ зерен, их обогащение по законам восходящей диффузии из объемов зерен легирующими элементами и примесями в связи с повышенной растворимостью элементов в жидкой фазе.  [c.389]

После образования кристаллической решетки по всему сечению шва доминирующее значение приобретают диффузионные процессы в твердой фазе, протекающие по двум противоположным законам выравнивания химического состава и восходящей диффузии, обусловленной химическим сродством элементов между собой. Последнее приводит к тому, что углерод, имеющий малый диаметр атома и большую скорость диффузии, диффундирует в зоны, где его концентрация выше, но имеются малоподвижные свободные карбидообразующие элементы.  [c.389]

При малых скоростях деформации наличие напряжений способствует восходящей диффузии водорода. Образование атмосфер вблизи свежих дислокаций, возникающих при пластической деформации, может протекать в процессе испытания.  [c.479]

Явления восходящей диффузии и самодиффузии относятся к механизму термической пластичности, так как определяются напряженным состоянием металла. При этом перемещения атомов происходят гораздо легче по границам зерен и мозаичных блоков, по плоскостям скольжения и вблизи их, т. е. всюду, где находятся дислокации, вакансии и другие несовершенства решетки.  [c.74]

Однако на практике зачастую наблюдается обрат на я или восходящая диффузия, т е диффу  [c.53]

При отжиге деформированных сплавов конкурируют два процесса релаксация внутренних напряжений (отдых) и диффузия, температурные интервалы которых, вообще говоря, не совпадают. Если отдых имеет место при более низких температурах, то восходящая диффузия не наблюдается. Восходящая диффузия возможна, если температура достаточно высока. Все это объясняет сложность явлений атомных перераспределений и связанных с ними изменений физических свойств деформированных сплавов.  [c.128]


Отпускная хрупкость II рода. Наблюдается у легированных сталей при медленном охлаждении после отпуска в области 450— 650° С (пунктирная линия на кривой рис. 134). Существует несколько объяснений природы этого дефекта. Рассмотрим наиболее распространенное. При высоком отпуске по границам зерен происходит образование и выделение дисперсных включений карбидов. Приграничная зона зерна обедняется легирующими элементами. При последующем медленном охлаждении происходит восходящая диффузия фосфора из внутренних объемов зерна к границам. Приграничные зоны зерна обогащаются фосфором, прочность границ понижается, ударная вязкость падает. Этому дефекту способствуют хром, марганец и фосфор (>0,001%). Уменьшают склонность к отпускной хрупкости II рода молибден и вольфрам (до 0,5%) и быстрое охлаждение после отпуска (сплошная линия на рис. 134).  [c.223]

Напряженное состояние, по исследованиям С. Т. Конобеевского, определяет направление диффузии атомы с большим диаметром перемещаются в зону растянутой кристаллической решетки такое явление называется восходящей диффузией. Кроме того, в чистом металле перемещаются его же атомы, что называется самодиффузией. При этом атомы из сильно напряженных участков перемещаются в менее напряженные и тем постепенно выравнивают напряжения.  [c.136]

В сложнолегированных сплавах может иметь место восходящая диффузия, когда миграция атомов идет в сторону увеличения градиента концентрации. Это связано с тем, что в общем случае движущей силой диффузии является не градиент концентрации, а градиент химического потенциала х х = Z, (d i dx), где L — коэффициент пропорциональности, определяющий скорость выравнивания химического потенциала. Кроме того, восходящая диффузия реализуется и в тех случаях, когда в результате перемещения вещества из объемов с меньшей концентрацией в с)б11емы с более высокой концентрацией уменьшаются напряжения, существовавшие в даинпм сплаве,  [c.27]

Влияние схемы деформации должно проявляться еще в одном пока мало изученном явлении. При практически любой механической схеме деформации, используемой в промышленности, имеется та или иная макронеоднородность пластического течения металла. Как следствие в деформируемом изделии должны возникать макронапряжения, растягивающие в одних объемах и сжимающие в других. При высоких температурах это вызовет восходящую диффузию в микро- и макрообъемах.  [c.543]

Однако экспериментальные исследования, проведенные при определенных условиях, обнарулотли много случаев, когда эти выводы уже не справедливы. Так, в телах, где имеются неоднородные упругие напрялюпия, а также в сплавах при образовании зародышей новой фазы с составом, отличающимся от исходного, наблюдается явление так называемой восходящей диффузии, при которой поток атомов определенного сорта течет в области их повышенной концентрации. Очевидно, что двил ущей силой таких процессов не молют быть разность концентраций.  [c.247]

Как было выяснено выше, теория диффузии Френкеля, в которой рассматривается перемещение одного атома во внешнем силовом поле соседних атомов металла, является сильно схематизированной теорией. Однако, если не ставить перед собой задачу определения численных значений коэффициентов диффузии и интересоваться лишь качественными зависимостями их от температуры, а в сплавах еще II от состава, а также параметров, характеризующих размещение атомов разного сорта, то такая теория может быть с успехом применена и к более сложным случаям. При этом, конечно, подразумевается, что температура тела постоянна, неоднородные поля напря-лщппй отсутствуют и тело не имеет неоднородностей, не связанных с наличием градиентов концентраций диффундирующих веществ. Таким образом, предполагается, что отсутствуют причины, приводящие к возможности восходящей диффузии и других явлений, требующих для своего объяснения более общего подхода. Поэтому в дальнейшем модель диффузии Френкеля будет широко применяться при решении различных вопросов указанного типа.  [c.252]

Из изложенного следует, что коррозионные туннели возникают и развиваются по вполне определенным кристаллографическим плоо остям в направлении, соответствующем минимальному сопротивлению пластической деформации. Это находит хорошее экспериментальное подтверждение при исследовании характера развития трещины коррозионного растрескивания. В пределах одного фрагмента (колонии а-фазы одной направленности) трещина имеет прямолинейный характер. Вместе с тем для коррозионного растрескивания характерно многочисленное ветвление трещины. Именно в результате ветвления трещины на металлографических шлифах, как правило, наблюдаются отдельные прямые трещины, не связанные с магистральной (рис. 39). Какова же при таком механизме роль скола Скол при коррозионном растрескивании появляется в результате восходящей диффузии водорода, адсорбированного стенками туннелей, в подповерхностные слои в вершине трещины в области максимальных напряжений. Скол происходит по выделившимся мелкодисперсным гидридам на плоскостях базиса. Оголяя ювенильную поверхность, скол позволяет коррозионной среде выбирать новую благоприятную кристаллографическую ориентировку в соседних плоскостях. Если скол не происходит, а туннели сочетаются с неблагоприятными ориентировками, процесс коррозионного растрескивания тормозится.  [c.67]

Реакция внутрищелевого раствора с участками металла с компло-нарным расположе ием рядов дислокаций (возникновение ручьевого узора), являющимися анодными участками. Туннельная коррозия, разрыв перемычек между туннелями, абсорбция водорода стенками туннелей, восходящая диффузия водорода в области Максимальных напряжений. Появление сколов по определенным кристаллографическим плоскостям.  [c.70]


Согласно приведенной выше схеме, выпадение, гидридов в подповерхностном слое в вершине трещины возможно лишь в случае абсорбции водорода катодными <астками в вершине треи ины, восходящей диффузии водорода в область максимальных напряжений (находящуюся в объемном напряженном состоянии) и образования пересыщенной водородом а-фазы и гидридов. Если в структуре металла имеется достаточное количество ч )азы, не склонной к коррозионному растрескиванию ( 3-фаза, стабилизированная ванадием, молибденом, ниобием или танталом), эта фаза является ак-кумулятором водорода, абсорбируемого катодными участками. В этом случае резко снижается возможность образования пересыщенной водородом а-фазы и выделения гидридов. Влияние различного количества ]3-фазы в структуре сплавов на склонность к коррозионному растрескиванию можно проиллюстрировать на одном и том же сплаве. Для этого использовали сплав, содержавший 6 % AI и 3,0 % V. В результате длительного отжига при 800°С в течение 100 ч практически весь ванадий перешел в а-твердый раствор, содержание /3-фазы, по данным рентгеноструктурного анализа, составило менее 0,3 %. Этот же сплав был подвергнут отжигу при 880°С в течение 1 ч с последующим охлаждением на воздухе. В последнем случае структура состояла из а-фазы и пласГинчатых выделений /3-фазы. Количество оста-  [c.71]

Выражение для потока дислокаций записывает в виде J = Ddildx, где D — коэффициент восходящей диффузии, в общем случае зависящий от р и X (D = onst > 0 t(j , е) — локальные напряжения). Используется также уравнение, характеризующее взаимосвязь локальных напряжений т с  [c.108]

Диаграмма состояния железо — легиру ющнй элемент 11 Диффузия восходящая 53  [c.405]

Деформация, снижающая температуру Ас облегчает образование аустенита трения. И, М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [33]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре стали после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легиро-ванности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содфжащимися в смазке. Аустенит  [c.259]

Водородная гипотеза КР (Эделяну, Эванс, Воган и др.) основана на повреждающем механическом или химическом действии поглощенного сталью водорода. Водород в атомарном состоянии выделяется при коррозионном процессе, адсорбируется на поверхности и диффундирует в металл в область сложнонапряженного состояния у острия трещины по механизму восходящей диффузии с образованием там твердого раствора внедрения, мар-тенситных и гидридных фаз, пор с высоким давлением молекулярного водорода и т. д. Трещина развивается по наводороженной области благодаря хрупкому разрушению или ускоренному растворению металла.  [c.110]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]

Типичные проявления восходящей диффузии неоднократно описывали при исследовании паяных соединений из стали латунными припоями, легированными кремнием (до 0,3—0,5%), который вводили в эти припои для упрочнения паяного соединения и торможения процессов испарения цинка. В контакте таких жидких припоев со сталью в результате большого химического сродства кремния с железом последнее вытягивает кремний из припоя по механизму восходящей диффузии и образует с ним хрупкий сплошной слой соединения FegSi. Естественно, что кремний, входящий в латунь отлитую в изложницу, нейтральную по отношению к кремнию или имеющую на поверхности толстый слой окислов, препятствующий их физическому контакту, повышает прочность латуни (снижая ее пластичность), тогда как кремний в припое вызывает снижение прочности паяного соединения при пайке железа и стали.  [c.60]

Продукт спинодального распада — обогащенная и обедненная легирующим элементом фазы, отличаются лишь концентрацией компонентов, следовательно, при спиподальном распаде возникает диффузионный поток, направленный против градиента концентрации, т. е. в основе механизма спинодального распада лежит восходящая диффузия.  [c.212]

Тогда для снижения когезии о всего на 10% требуется локальная концентрация водорода перед вершиной трещины 10 . Вместе с тем, оценки, учитывающие восходящую диффузию водорода с поверхности в зону трехосного растяжения у вершины, где химический потенциал внедренных атомов водорода понижен, показывают, что равновесная концентрация водорода здесь С ппри внешнем давлении Р ц 0,1 МПа (вполне достаточном для замедленного разрушения в сталях с уровнем прочности 10 МПа) оказывается ниже в 10 раз [216].  [c.178]


В связи с рассмотренными гипотезами о механизме влияния межкристаллитной внутренней адсорбции примесей, ответственных за отпускную хрупкость, на водородное охрупчивание (4 /) — усиление абсорбции атомарного водорода на поверхности металл - электролит (2) - повышение локальной концентрации водорода на границах зёрен с примесями в зоне предразрушения (3) - аддитивное воздействие примесей и водорода на, когезивную прочность границ, интересны результаты [219, 2201. В этих работах рассмотрена кинетика заоождения и роста микротрещин, развивающихся в твердых растворах се-железа с Р, 8 и С без внешних механических напряжений под действием давления молекулярного водорода, заполняющего полость трещин и достигающего по оценкам [220] 1800 МПа. При этом условия ввода водорода в металл (катодное насыщение из N2804 с добавкой промотора наводороживания АвзО,, высокие плотности катодного тока) были такими, что позволяли не учитывать механизм (1), Средняя концентрация Н в твердом растворе в равновесии с в трещинах по оценкам работы [219] составляла (6 — 60) Ю , т.е. была выше локальной концентрации атомов Н 8 зоне предразрушения перед вершиной растущих трещин в сталях, склонных к замедленному разрушению в водороде. Это обстоятельство вместе с отсутствием существенной восходящей диффузии водорода к вершине в мягком железе, позволяло не учитывать при объяснении влияния примесей на сопротивление водородному охрупчиванию и гипотезу (2).  [c.180]

При эвтектоидном превращении наблюдается восходящая диффузия. Ведущей фазой является цементит. Пластинка цементита начинает расти либо от границы зерна аустенита, либо центром кристаллизации оказывается неметаллическое включение. Соседние области обедняются углеродом, там образуется феррит. Повторяясь многократно, этот процесс приводит к образованию зерна перлита, состоящего из параллельных пластинок цементита и феррита. Чем грубее и крупнее выделения цементита, т м. хуже ме-ханичесгае свойства перлита.-  [c.156]

При испытаниях на длительную прочность при напряжениях, меньших предела текучести, перемещение водорода к границам зерен осуществляется не за счет движения дислокаций вместе с атмосферами Коттрелла, как при обратимой водородной хрупкости шестого вида, а за счет восходящей диффузии. Несомненно, что этот вид диффузии играет доминирующую роль в замедленном разрушении при статическом изгибе, а также при работе реальных конструкций.  [c.358]


Смотреть страницы где упоминается термин Диффузия восходящая диффузия : [c.347]    [c.463]    [c.75]    [c.56]    [c.112]    [c.387]    [c.127]    [c.127]    [c.127]    [c.143]    [c.252]    [c.16]    [c.266]    [c.265]    [c.283]    [c.298]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.286 ]



ПОИСК



Диффузия

Диффузия восходящая

Диффузия восходящая



© 2025 Mash-xxl.info Реклама на сайте