Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газогенератор турбины

Задача расчета — вывод зависимостей, определяющих распределение массового расхода компонентов топлива через газогенераторы турбины и КС в зависимости от заданных значений соотношения компонентов топлива, расходуемых газогенератором окислителя к , горючего к и ЖРД в целом к .  [c.314]

Характер зависимостей мощности насосов и турбины от угловой скорости определяется системой питания турбины. Назовем независимой системой питания турбины систему, при которой подача компонентов в газогенератор турбины осуществляется независимо от насосов, подающих компоненты в камеру сгорания. К этим системам относятся вытеснительные системы подачи унитарного топлива  [c.295]


В газогенератор турбины и системы питания турбины от твердотопливного генератора или от газогенератора.  [c.296]

Регулирование турбины изменением расходов компонентов через газогенератор (турбину) осуществляется дросселями на магистралях, подводящих компоненты топлива к газогенератору. При этом мас-  [c.303]

Аналогичная картина может иметь место и при работе газогенератора турбины на основных компонентах. При работе насоса на восходящей ветви напорной характеристики отклонение по расходу, приводящее к отклонению по напору такого же знака, влечет за собой изменение расхода газа через турбину, вследствие чего может произойти увеличение или уменьшение угловой скорости ТНА и потеря устойчивости ЖРД.  [c.308]

В системах питания ЖРД может встретиться последовательное соединение насосов. Бустерный насос (см. схему, приведенную на рис. 3.65) и основной насос представляют собой два последовательно установленных насоса. Последовательное соединение насосов может найти применение в ЖРД с большим давлением в камере сгорания. При охлаждении камеры компонентом топлива может оказаться нецелесообразным (из соображений прочности) подавать компонент в рубашку охлаждения под давлением, равным давлению в камере. Применив два последовательно соединенных насоса, можно избежать высоких давлений в рубашке охлаждения. В ряде случаев газогенератор турбины, работающий на основных компонентах, целесообразней питать от отдельных насосов, в которые последовательно поступает часть компонентов от основных насосов (см. рис. 1.15). Наконец, последовательное и параллельное соединения насосов могут встретиться на стендах при использовании готовых агрегатов для работы в общей сети.  [c.309]

Газогенератор турбины 21, 24 Гидравлические потери 101, 109 Гидродинамическое радиальное уплотнение 159 Густота  [c.369]

Рис. 1.12. Схема ПГУ с предварительной газификацией твердого топлива в псевдоожиженном слое дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—рециркуляция газа 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с псевдоожиженным слоем 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления твердых частиц 20 — газовая турбина 21 — котел-утилизатор 22 — паровая турбина 23 — электрогенератор 24 — уходящие газы Рис. 1.12. Схема ПГУ с предварительной газификацией <a href="/info/881">твердого топлива</a> в <a href="/info/5512">псевдоожиженном слое</a> дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—<a href="/info/73993">рециркуляция газа</a> 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с <a href="/info/5512">псевдоожиженным слоем</a> 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления <a href="/info/184030">твердых частиц</a> 20 — <a href="/info/884">газовая турбина</a> 21 — <a href="/info/30635">котел-утилизатор</a> 22 — <a href="/info/885">паровая турбина</a> 23 — электрогенератор 24 — уходящие газы

Трехвальную схему (рис. 4.15, в) применяют для транспортных ГТД большой мощности (свыше 5 МВт), например, судовых и пиковых, аварийных стационарных энергетических ГТУ, если в качестве газогенератора (блоков компрессоров и турбин высокого и низкого  [c.192]

При насосной системе подачи топлива основное повышение давления его компонентов создается не в баках, а насосами 12, 16 (см. рис. 6.6, в, г). Привод насосов осуществляется газовой турбиной 15. В большинстве случаев в качестве источника газа для привода турбины турбонасосного агрегата (ТНА), включающего насосы и турбину, используются жидкостные газогенераторы (ЖГГ) 14, работающие, как правило, на основных компонентах топлива ЖРД. Продукты генерации в ЖГГ называются окислительными, если они получены при избытке окислителя (коэффициент избытка окислителя а > 1), и восстановительными, если имеется избыток топлива (а < 1).  [c.265]

Если все топливо проходит через ЖГГ, то в камеру сгорания вводится жидкий окислитель и газ с недостатком окислителя (схема таз — жидкость, рис. 6.6, в). В аналогичной схеме весь окислитель проходит через ЖГГ, а в камеру сгорания вводятся жидкое топливо и газ с избытком окислителя. Если все топливо, расходуемое ЖРД, до поступления в камеру сгорания проходит через соответствующие газогенераторы 14 и турбины, то в камеру сгорания вводятся и дожигаются в ней газ с избытком топлива и газ с избытком окислителя (схема газ — газ, рис. 6.6, г).  [c.265]

Зола Лр — причина засорения топлива и снижения доли горючей части. Помимо этого, она наносит вред паровым котлам и газогенераторам, приводит иногда к шлакованию (затвердеванию расплавленной золы на рабочих частях конструкций) и износу металлических поверхностей под действием потока газа, содержащего твердые абразивные частицы. Наличие золы в твердом топливе является основным препятствием для его применения в двигателях внутреннего сгорания (как в поршневых, так и в газовых турбинах) опять-таки из-за опасности золового износа рабочих элементов двигателей. Содержание золы в сухой массе твердых топлив колеблется от 1 (дрова) до 70 % (отдельные месторождения сланцев). Особенно велико количество золы в сланцах. Хотя теплота их сгорания по горючей массе такая же, как бурого и каменного углей и даже антрацита, в пересчете  [c.61]

Щит разделен на секции, число которых равно числу установленных ГПА. Каждая секция, в свою очередь, разделена на две стойки. Левая стойка в верхней части имеет красную световую индикацию, при включении которой дается информация об аварийной ситуации одного из составляющих элементов ГПА. Ниже следует индикация желтого цвета, которая оповещает о предаварийном состоянии соответствующего параметра или узла. В средней части высвечиваются текущие значения и параметры газогенератора и силовой турбины. Ниже по каждому из подшипников приводятся текущие значения вибрации и осевого сдвига вала нагнетателя. На нижней левой части стойки имеются кнопки, сигнализаторы, переключатели ручного и автоматического управления агрегата и вспомогательных систем. Правая стойка, если смотреть сверху вниз, по ГПА несет информацию о перестановке кранов, обозначенных на мнемосхеме по системе обнаружения газа — о вибрации узлов и температуре по противопомпажному регулированию — о аварийной ситуации По температуре и расходе топлива. Кроме главного щита в каждом блок-боксе укрытий ГПА имеется местный щит управления, с помощью которого осуществляют контрольно-измерительные и регулирующие операции агрегата.  [c.61]

На фиг. 12 приведена схема газогенераторной установки с турбокомпрессором, приводимым в действие турбиной, работающей от отработавших газов двигателя. Турбокомпрессор помещается перед газогенератором и установка работает под избыточным давлением 0,5 кг/слА. Применение наддува даёт возможность иметь газогенераторные автомобили с максимальным динамическим фактором не менее 4,5%. Следует, однако, иметь в виду, что действие наддува заметно сказывается на больших оборотах двигателя (фиг. 13).  [c.231]

Полагая размеры последней ступени турбины, приводящей компрессор, равными размерам последней ступени однопоточной турбины, получим наибольший расход газа через часть высокого давления (газогенератор)  [c.167]

Чтобы обеспечить надежное воспламенение и наиболее полное и быстрое сгорание эмульсии при вводе ее в качестве горючего в реакционное пространство котла, печи, газогенератора, камеры сгорания газовой турбины или цилиндр дизеля, все эмульсии, приготовленные из тяжелых топлив, в том числе из керосина и дизельного топлива, должны быть только одного типа — вода — масло (В — М). Именно этот тип эмульсии обеспечивает ее надежное воспламенение, поскольку в каплях, образовавшихся при распыливании, вода находится внутри (дисперсная фаза), а само топливо — снаружи (дисперсионная среда). Применение такого типа эмульсий оправдало себя во всех процессах горения еще и по другой, не менее важной причине.  [c.121]


В камерах сгорания ПГТУ принципиально могут быть использованы газообразное (метан, пропан, смесь водорода и окиси углерода и т. п.) или жидкое (бензин, керосин, малосернистый мазут, метанол — метиловый спирт и т. п.) топливо. При этом не исключается возможность использования и угольного топлива, например с предварительной его газификацией. Принципиальная возможность работы газовых турбин в сочетании с газогенератором показана на опытно-промышленных установках еще в 1930-е годы.  [c.60]

Внутренний контур (первый, или газовый) является газогенератором, работающим, как ТРД, в котором часть потенциальной энергии газа расходуется на создание тяги, а другая часть передается во внешний контур. Внешний контур (второй, или воздушный) является генератором сжатого воздуха и состоит из входного устройства, компрессора внешнего контура (вентилятора) с последующим кольцевым каналом и реактивного сопла. Энергия сжатого воздуха трансформируется в тягу внешнего контура. На сжатие воздуха компрессором внешнего контура затрачивается мощность турбины, расположенной во внутреннем контуре.  [c.8]

Двухконтурные турбореактивные двигатели с задним расположением вентилятора (с турбовентиляторной приставкой) создавались в 60-е годы на базе серийных, хорошо зарекомендовавших себя в эксплуатации ТРД, которые использовались в качестве газогенератора внутреннего контура (рис. 8). Турбовентиляторная приставка увеличивает тягу и повышает экономичность ТРД. Связь между приставкой и внутренним контуром — чисто газодинамическая. Турбовентиляторная приставка выполняется в виде двухъярусного колеса (внутренние лопатки — турбинные, внешние— вентиляторные). Окружная скорость вращения такого колеса невелика, а следовательно, невелики мощность турбинной части приставки и степень повышения давления вентилятора Вследствие этого выбор оптимального соотношения между и степенью двухконтурности не всегда возможен. Кроме того, по-  [c.17]

Следует отметить, что увеличение значений я и Г в перспективных авиационных ГТД сопровождается возрастанием трудностей при создании высокоэффективных узлов двигателя, и в частности компрессора и турбины газогенератора. Так, в двигателе с высоким значением степени повышения давления суш,ест-венно уменьшаются размеры проточной части компрессора и турбины, что приводит к снижению КПД компрессорных ступеней из-за большого влияния утечек и перетечек через относительно увеличивающиеся зазоры, технологических отклонений от заданного профиля малых по размеру лопаток на их газодинамические характеристики и т. д. В двигателе с высокой температурой газа интенсивное охлаждение турбины приводит к снижению ее КПД, так как утолщаются профили сопловых и рабочих лопаток, вводится перфорация стенок проточной части и поверхностей лопаток, возникают утечки охлаждающего воздуха. Кроме того, применение в двигателе высокой тт сопровождается для турбины такими же отрицательными газодинамическими эффектами, как и для компрессора. По этим причинам при проектировании новых авиационных ГТД параметры рабочего процесса выбираются с учетом технических возможностей достижения задаваемого уровня газодинамической эффективности элементов и узлов двигателя.  [c.29]

Газогенератор GE1 имеет следующие параметры расход воздуха— 27—32 кг/с, температура газа перед турбиной — более 1365 К, степень повышения давления в компрессоре—11, габаритный диаметр — 610 мм, длина — примерно 1780 мм, масса — около 320 кг. ТРД с этим газогенератором развивает на взлетном режиме тягу 22,3 кН. Газогенератор пмеет одновальный че-  [c.81]

Исходя из конкретных требований, предъявленных к самолету С-5А, был найден компромисс между удельным расходом топлива, массой двигателя и сопротивлением мотогондолы для получения оптимального соотношения между суммарной степенью повышения давления, температурой газа перед турбиной и степенью двухконтурности. Для двигателя были выбраны n j, = l,55 и яг = 8. Температура газа определялась с учетом применения охлаждаемой турбины газогенератора, использующей проверенную систему охлаждения, и неохлаждаемой турбины вентилятора. Учитывая эти соображения и зависимость дальности полета от степени повышения давления в компрессоре газогенератора л д, оптимальная температура 7 на крейсерском режиме полета была определена примерно равной 1365 К (при 7 = 1530 К на взлетном режиме). Оптимальная по дальности я превышает 20, однако для двигателя была выбрана я д =17, так как это значение, по данным фирмы, является наиболее выгодным для одновального компрессора с поворотными направляющими аппаратами.  [c.123]

Газовый тракт ЖРД состоит из проточных частей ряда агрегатов газогенератора, турбины, газовода, камеры сгорания. Процессы в каждой из перечисленных частей тракта имеют свои особенности, которые влияют на их динамические характеристики. Поэтому рассмотрим каждый из агрегатов отдельно.  [c.183]

Под зависимой системой питания турбины будем понимать систему, при которой насосы, приводимые турбиной, подают компоненты топлива в газогенератор турбины. В этом случае при запуске ТНА, как правило, проходные сечения магистрали от насоса до газогенератора максимально открыты. Поэтому напор насоса растет пропорционально квадрату угловой скорости, а расход газа, поступающего в газогенератор, увеличивается линейно угловой скорости (см. рис. 3.42). Последнее приводит к тому, что мощность турбины возрастает по мере роста угловой скорости медленнее, чем при = = onst. На рис. 5.2 показана типичная зависимость мощности 296  [c.296]

Газотурбинная установка типа, ,Коберра-182" (рис. 7) состоит из газогенератора, ,Эйвон" и свободной силовой турбины.  [c.42]

Зона / несет информацию в виде светового табло о причинах аварийной остановки агрегата, к которым относятся аварийная загазованность в боксе укрытия или отсеке агрегата пожар в боксе или отсеке агрегата превышение температуры смазочного масла на выхлопе газогенератора, на нагнетании, на сливе подшипников нагнетателя, подшипников газогенератора, смазочного масла газогенератора превышение перепада давления на воздушном фильтре и давления на нагнетании, уровня жилкссти в пылеуловителе, частоты вращения вала силовой турбины низкое давление смазочного масла ТНД или газогенератора низкий уровень смазки в маслобаке нагнетателя, уплотнения неисправность противообледенителя газогенератора неисправность положения кранов нагнетателя уменьшение частоты вращения вала газогенератора, силовой турбины высокая вибрация по узлам ГПА осевой сдвиг валов ГПА незавершенная последовательность операций.  [c.61]


В левом нижнем углу левой панели устроена световая индикация X о предпусковых операциях и переходах, которые выполняют в следующей последовательности готов к пуску, щит исправен прогрев не нужен нет сигнала останова станции включен в Пинию нет сигнала останова агрегата минимальные обороты нет сигнала тревоги агрегата, максимальные обороты всасывающий клапан закрыт увеличить мощность нагнетательный клапан закрыт противообледенитель включен клапаны рециркуляции и повышения давления в правом положении остановка под давлением ключи управления в правильном положении останов агрегата агрегат не работает агрегат останавливается температура масла нормальная прокачка масла после останова питание есть прокачка масла при низкой температуре воздуха. Правее этой индикации расположен вертикальный ряд глазков ХП, несущих информацию о пусковых операциях и переходах, к которым относятся пуск агрегата пусковой двигатель работает маслонасос смазки включен давление масла смазки газогенераУора нормально давление масла смазки нормально газогенератор продувается маслонасос уплотнения включен зажигание включено уровень масла уплотнения нормален клапан подачи топливного газа открыт клапан повышения давления открыт частота вращения газогенератора более 2200 об/мин свеча закрыта частота вращения газогенератора более 3000 об/мин компрессор под давлением частота вращения силовой турбины более 500 об/мин всасывающий клапан открыт прогрев агрегата нагнетательный клапан открыт готов к нагрузке клапан повышения давления закрыт агрегат нагружен маслонасос смазки газогенератора включен клапан рециркуляции закрыт.  [c.63]

На правой панели щита управления агрегатом в верхней части расположена мнемосхема ГПА. Ниже размещена приборно-световая индикация по системе обнаружения газа. Ниже следуют приборы, дающие информацию о техническом состоянии газогенератора. В левом нижнем углу правой панели имеется два ряда кнопок, расположеннь х по вертикали ряд А обеспечивает информацию об аварийном состоянии по температуре, ряд В — предупредительном состоянии по температуре, в которую входят AJB — масло на выходе силовой турбины A IBi — масло подшипника электрогенератора А 1В — масло уплотнения переднего подшипника  [c.63]

II — зоны /// — частота вращения вала газогенератора (ГГ) IV — частота вращения вала силовой турбины V — вибрация переднего подшипника нагнетателя по горизонтали VI — то же, по вертикали VII — вибрация заднего подшипника нагнетателя по горизонтали VIII — то же, по вертикали IX — осевой сдвиг вала нагнетателя X — вибрация подшипника силовой турбины X — световая индикация о предпусковых операциях и переходах XII — ряд глазков ХШ — продувка (ГГ), первое ускорение ГГ, второе ускорение ГГ, первое ускорение турбины, прогрев, второе ускорение турбины, остановка агрегата, смахка после остановки XIV — система обнаружения газа XV — вибрация входа ГГ XV — вибрация турбины ГГ XVII — перепад температуры на выхлопе ГГ XIX — противопомпажное регулирование  [c.63]

Для обеспечения автономности агрегата типа, ,Коберра-182" от снабжения электроэнергией переменного тока с валом силовой турбины соединен вал генератора собственных нужд мощностью 125 кВт. Особенность данного типа ГПА — газотурбинный двигатель имеет две отдельные системы смазки газогенератора, в которой используют синтетическое масло силовой турбины и нагнетателя, в которой используют минеральное масло. Составляющие узлы обеих систем расположены в отдельном блоке. Воздушный маслоохладитель смонтирован снаружи здания.  [c.120]

Фиг. 12. Схема газогенераторной установки с турбокомпрессором (работа под давлением) / — газогенератор 2 — от-сто ник 3 — охладитель 4 — фнльтр 5 — вентилятор розжига 6 — смеситель 7 — выхлопной коллектор 8а— центробежный нагнетатель 56 — газовая турбина 9 и 10—рукоятки для регулирования качества и количества газовоздушной смеси //—пружины крышки загрузочного люка газогенератора /2 —бачок для конденсата 13 — отверстие для розжига газогенератора 14—воздухопровод от нагнетателя к газогенератору 75 — газопроводы /5 — трубопровод для выхлопных газов 17—выхлоп 18 — воздухопровод к смесителю. Фиг. 12. Схема <a href="/info/219826">газогенераторной установки</a> с турбокомпрессором (работа под давлением) / — газогенератор 2 — от-сто ник 3 — охладитель 4 — фнльтр 5 — вентилятор розжига 6 — смеситель 7 — выхлопной коллектор 8а— <a href="/info/77017">центробежный нагнетатель</a> 56 — <a href="/info/884">газовая турбина</a> 9 и 10—рукоятки для регулирования качества и количества газовоздушной смеси //—пружины крышки загрузочного люка газогенератора /2 —бачок для конденсата 13 — отверстие для <a href="/info/603406">розжига газогенератора</a> 14—воздухопровод от нагнетателя к газогенератору 75 — газопроводы /5 — трубопровод для выхлопных газов 17—выхлоп 18 — воздухопровод к смесителю.
Газгольдеры F 17 ( переменной В 1/00-1/26 постоянной С) вместимости Газобалластные насосы F 04 В 37/00-37/20 Газовая В 23 К резка 7/00-7/10 сварка 5/00-5/24) Газовые [горелки, использование в устройствах для зажигания F 23 Q 13/02 гранаты F 42 В 12/46 ДВС F 02 В 43/00-43/12 потоки (для разделения твердых материалов В 07 В 4/00-11/00 реакции в физических и химических процессах В 01 J 12/00-12/02) использование термометры G 01 К 5/28-5/30 турбины (F 01 D, F 02 С камеры сгорания для них F23R)] Газогенераторные [ДВС F 02 В 43/08 установки (С 10 J 3/(20-44, 48-52, 56, 72-86) размещение на транспортных средствах В 60 К 15/10)] Газогенераторы (В 01 J 7/00-7/02 ацетиленовые СЮН 1/00-21/16 использование в газотурбинных установках F 02 С 3/28 колосниковые решетки F 23 Н 13/08) Газожидкостные двигатели F 02 В  [c.62]

Турбовинтовые двигатели (ТВД) и турбовальные двигатели, имеют рабочий процесс, сходный с рабочим процессом ТРД, и отличаются тем, что у них расширение газа в турбинах происходит до давления, близкого к атмосферному, поэтому суммарная мощность их турбин превышает потребную для привода компрессора газогенератора. Этот избыток мощности передается на вал двигателя и затем используется для вращения воздушного винта самолета, несущего винта вертолета или для каких-либо других целей. Согласование частот вращения выходного вала двигателя и воздушного винта здесь обычно требует применения редуктора, что утяжеляет конструкцию и усложняет эксплуатацию силовой установки. По этим причинам, а также в связи с потребностью дальней-  [c.12]

Разновидностью ГТД являются также вертолетные турбоваль-ные двигатели, рабочий процесс которых аналогичен рабочему процессу ТВД, однако преобразование избыточной потенциальной энергии газа в мощность осуществляется с помощью отделенной от газогенератора свободной турбины, а передача мощности на несущий винт вертолета происходит при существенно отличающихся частотах вращения вала свободной турбины и вала винта, для чего используется отдельный агрегат, не включаемый в конструкцию двигателя, — главный редуктор вертолета с передаточным отношением от 20 1 до 50 1.  [c.10]

Наконец, ДТРД с выносным вентилятором, так называемым турбовентиляторным агрегатом усиления тяги (ТВА), предполагается использовать для самолетов с вертикальным и укороченным взлетом и посадкой. ТВА представляет собой двухъярусное колесо (внутренние лопатки вентиляторные, внешние — турбинные), к турбинным лопаткам которого подводится сжатый и горячий газ от газогенератора (обычно это ТРД). Мощность, развиваемая турбиной, используется для разгона большого количества воздуха, проходящего через вентилятор, а следовательно, для создания тяги. Турбовентиляторный агрегат (рис. 9) располагается вне  [c.19]

Естественно, что невозможно было превратить газогенератор GE1, имеющий тягу 22,3 кН, в двигатель TF39 с тягой 182,8 кН простым добавлением узлов. Поэтому в ДТРД TF39 не только были увеличены размеры узлов и агрегатов, общая степень повышения давления и температура газа перед турбиной, двигатель, кроме того, строился на более совершенном технологическом уровне, чем исходный газогенератор.  [c.83]


Опыт создания газогенератора GE1 и различных двигателей на его основе позволил разработать другой газогенератор GE9 (ATEGG 1В) с тягой в варианте ТРД 24,9 кН. Газодинамические нагрузки компрессорных ступеней у него по сравнению с газогенератором GE1 были увеличены, в результате чего возросла степень повышения давления. Существенно выше также стала температура газа перед турбиной, что потребовало применения более эффективной системы охлаждения и новых материалов для ее деталей. Вместе с тем газогенератор GE9 по конструктивной  [c.83]

Технические возможности, заложенные в газогенераторе GE1 и его последующих модификациях, использованы в ряде других двигателей фирмы. В частности, турбина газогенератора GE9, камера сгорания другой его модификации GE1/10 и вентилятор демонстрационного ДТРД GE1/6 Послужили основой для двухконтурного двигателя TF34, применяемого в различных модификациях на патрульном самолете противолодочной обороны ВМФ США S-3A и самолете непосредственной поддержки ВВС США А-10А. Газогенератор GE1/J1B практически без изменения конструкции был использован в ТРД J97, созданном для беспилотного летательного аппарата. Кроме того, на двигателях различных схем и модификаций исследовались некоторые новые технические решения (регулируемый сопловой аппарат турбины низкого давления, реактивное сопло с регулируемым по направлению вектором тяги, перспективные схемы охлаждения турбины высокого давления и др.).  [c.84]

Потребность в низком удельном расходе топлива при полете на крейсерском режиме предопределяет выбор высокой степени повышения давления двигателя, так как с увеличением значение Суд уменьшается. Однако при выборе степени повышения давления следует учитывать возможности системы охлаждения, работающей на сжатом и подогретом в компрессоре воздухе. Увеличение и скорости полета сопровождается уменьшением хла-доресурса воздуха и как следствие этого утяжелением и усложнением конструкции компрессора и турбины газогенератора.  [c.88]


Смотреть страницы где упоминается термин Газогенератор турбины : [c.18]    [c.19]    [c.264]    [c.25]    [c.63]    [c.123]    [c.270]    [c.7]    [c.36]    [c.36]    [c.83]    [c.162]   
Теория и расчет агрегатов питания жидкостных ракетных двигателей Издание 3 (1986) -- [ c.21 , c.24 ]



ПОИСК



Газогенераторы



© 2025 Mash-xxl.info Реклама на сайте