Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение вязкое, хрупкое

Принцип линейного суммирования повреждаемостей, вообще говоря, не связан с характером разрушения (вязкого, хрупкого). Однако в рамках каждого механизма разрушения этот принцип оказывается справедливым лишь при определенных условиях. Рассмотрим это на примере модели хрупкого разрушения.  [c.125]

В главе IV книги содержалось описание экспериментально установленных закономерностей и некоторых критериев длительной прочности. Здесь буду рассмотрены макроскопические подходы к этой проблеме, основанные на различных моделях разрушения (вязкое, хрупкое, смешанное), и некоторые общие теории. Реальные процессы разрушения материалов настолько сложны, что указанные модели могут рассматриваться лишь как первое приближение. Поэтому на полученные с ломощью этих моделей формулы следует смотреть как на приближенные. Вместе с тем. установлено, что в ряде случаев результаты расчетов по этим формулам находятся в удовлетворительном согласии с данными прямых экспериментов. Вследствие этого теоретические исследования длительной прочности на основе указанных моделей имеют большое значение и перспективу развития.  [c.179]


Рассмотрим макроскопические подходы к этой проблеме, основанные на различных моделях разрушения (вязкое, хрупкое, смешанное), и некоторые общие теории. Заметим, что для разрушения при ползучести такой подход был предложен Л. М. Качановым 183], а в исследованиях усталости материалов понятие суммирование повреждений существует давно [193].  [c.264]

Каковы основные показатели, которые позволяют отнести разрушение к хрупкому или вязкому типу.  [c.72]

Вид разрушения — вязкий или хрупкий определяют в результате изучения изломов (фрактография).  [c.73]

Определение надежности (испытание на удар). Для установления степени надежности материала необходимо определение сопротивления разрушению вязкому (Ор), хрупкому (Гв —7 н или Т ц) или вязкости разрушения (Ki ). Об определении Ki коротко говорилось ранее, об определении сопротивления разрушению при ударных испытаниях, получивших в особенности за последнее время широкое расиространение, скажем немного подробнее. Практически оказалось удобнее разрушать образец ударом при еш изгибе и фиксировать место разрушения надрезом).  [c.80]

Сопротивление разрушению вязкому 74 хрупкому 74 Сормайт 507 Сплавы  [c.646]

Тпл. — температура плавления) достигает минимума, после чего резко возрастает. В точке максимума кривой Ss T) происходит смена механизма разрушения от хрупкого к вязкому. В области вязкого разрушения зависимость 5к от Т имеет плато и (или) слабо убывает.  [c.52]

Т аким образом, в зависимости от металла, условий и характера нагружения разрушение происходит по механизму вязкого или хрупкого разрушений. Вязкое разрушение реализуется в результате макроскопической или локальной потери  [c.121]

Экстремальные значения критериев при вязком, хрупком и квазихрупком разрушении стали  [c.354]

В отличие от хрупкого вязкое разрушение, возникающее в результате пластической информации, менее опасно, поскольку его начальные стадии бывают хорошо заметны визуально. Например, при вязком разрушении какого-либо сосуда под давлением Р, в нем появляются выпучины, заметив которые мы можем остановить работу сосуда до его полного разрушения, которое может провести к катастрофе. Если же разрушение будет хрупким, даже при часто проводимом тщательном внешнем осмотре сосуда мы не сможем визуально обнаружить каких-либо предвестников разрушения. Тогда разрушение может произойти совершенно неожиданно для нас.  [c.19]

Что такое разрушение Механизмы хрупкого и вязкого разрушения.  [c.158]

МПа. = 1005 МПа. В случае отсутствия эффекта контактного упрочнения непровар размером 1/В = 0.1, р = 0,1 мм является допустимым. Его размеры отвечают области вязких разрушений, расположенной справа от границы вязко-хрупкого перехода АВ.  [c.115]


С понижением температуры элементы конструкции из пластичных материалов могут разрушаться хрупким образом. При понижении температуры предел текучести сГт и предел прочности Сц возрастают, но предел текучести возрастает быстрее и при очень низких температурах они практически совпадают. Удлинение при разрыве с понижением температуры уменьшается и при некоторой температуре происходит переход от вязкого разрушения к хрупкому. При динамическом деформировании предел текучести возрастает быстрее с понижением температуры и температура перехода от вязкого разрушения к хрупкому повышается. Явление хрупкости стали при низких температурах получило название хладноломкости.  [c.71]

Испытания на ударную вязкость позволяют выявить склонность к хладноломкости раньше, чем обычные методы испытания. Если при испытании гладких образцов на растяжение переход от вязкого разрушения к хрупкому наблюдается при очень низких температурах от —100 до —200°С, то в испытаниях на ударную вязкость этот переход наблюдается при более высоких температурах. Для малоуглеродистой стали в зависимости от обработки стали переход происходит в интервале от —20 до +40°С.  [c.72]

В действительности приведенная на рис. 19.8.1 схема реализуется не всегда, у некоторых материалов отсутствует участок вязкого разрушения, у других, наоборот, во всем диапазоне напряжений разрушение носит вязкий характер. Не всегда переход от вязкого разрушения к хрупкому происходит сразу в точке В диаграммы. В окрестности этой точки обычно бывает область смешанных разрушений, которой на диаграмме соответствует показанная штриховой линией кривая.  [c.673]

Если материал разрушается без заметных пластических деформаций, то он называется хрупким, а разрушение называется хрупким разрушением. В противовес этому разрушение, сопровождающееся пластическими деформациями, называется вязким.  [c.14]

Если разрушению предшествовала значительная пластическая деформация, разрушение называют вязким, если же пластическая деформация составляла менее 1—2%, разрушение считают хрупким.  [c.420]

А. Ф. Иоффе Снятие поврежденного поверхностного слоя образца приводит к. повышению его прочности. Предложена схема, поясняющая переход вязкого разрушения в хрупкое с понижением температуры. Введено понятие критической температуры хрупкости  [c.479]

Автор работы [8] также считает причиной хладноломкости металлов усиление ковалентных связей и уменьшение металлических связей в металлах при понижении температуры переход от вязкого разрушения к хрупкому обусловлен качественным изменением характера связей при 7 х = 0,225 Гпл. Пластическая деформация может происходить только в металлах и только вследствие наличия ненаправленной металлической связи. Кристаллы с ковалентной или ионной связью не могут пластически деформироваться [8].  [c.20]

Разрушение Хрупкое разрушение, вязкое разрушение  [c.81]

В первую очередь это относится к металлам и сплавам с ОЦК-решет-кой, показывающим [52, 74—76] в области низких температур, с одной стороны, очень резкое повышение прочностных свойств (рис. 2.8), с другой — значительное снижение пластичности вплоть до полностью хрупкого разрушения. Такое явление вязко-хрупкого перехода имеет исключительно важное значение для практических целей, поскольку ограничивает использование при низких температурах многих конструкционных материалов с ОЦК-решеткой.  [c.44]

Интерес к исследованию механического двойникования был обусловлен началом в 60-е годы широкого изучения исключительно важного в практическом отношении явления хрупкого разрушения материалов и конструкций в условиях низкотемпературной деформации. Двойникование в этом вопросе рассматривалось с двух альтернативных позиций во-первых, как одна из вероятных причин вязко-хрупкого перехода, а, во-вторых, как потенциальный способ повышения низкотемпературной пластичности материала. Поэтому одной из основных задач физики прочности того периода стало изучение общих закономерностей пластической деформации и разрушения при механическом двойниковании. Одно из первых решений указанной задачи было предложено в работе [121] в виде схемы перехода от скольжения к двойникованию в поликристаллах. Построение схемы основывалось на данных работы [117] и собственных результатах авторов [121], полученных при низкотемпературном растяжении армко-железа со скоростями 10 — 10 с .  [c.57]


В соответствии с величиной энергии, необходимой для разрушения, различают хрупкое разрушение и вязкое. Хрупкое разрушение происходит за счет накопленной материалом упругой энергии трещина не требует для своего распространения дополнительного подвода извне. Для развития вязкого разрушения необходим внешний подвод энергии, расходуемой на пластическое деформирование, растрескивание и другие виды поглощения энергии.  [c.189]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

После достижения критической температуры хрупкости дальнейшее увеличение температуры сопровождается увеличением работы пластической деформации, которая одновременно реализуется в процессе зарождения и роста трещины. Вязко-хрупкий переход в разрушении сопровождается сменой доминирующего механизма роста трещин.  [c.82]

Определение предельного или критического размера трещины, при достижении которого происходит быстрое развитие разрушения, а, следовательно, дальнейшая эксплуатация детали невозможна, основано на методах механики разрушения [1-4, 47-50]. Переход к быстрому разрушению может быть реализован в разных состояниях материала хрупко, вязко или смешанно вязко-хрупко. Промежуточное состояние материала при вязко-хрупком переходе, когда изменяются условия воздействия на материал, будем относить к вязкому разрушению с меняющейся работой пластической деформации в вершине распространяющейся трещины.  [c.102]

Бора волокна, переход от вязкого-разрушения к хрупкому 163  [c.429]

Анализ кривых длительной прочности перлитных теплостойких сталей в сопоставлении с характером разрушения образцов позволил [47] считать, что перегиб на кривой длительной прочности в исходном состоянии совпадает с переходом от вязкого разрушения к хрупкому межзеренному за счет порообразования. Экстраполяция свойств жаропрочности в этом случае проводится в условиях однотипности разрушения при испытаниях в эксплуатации, что повышает достоверность экстраполяции.  [c.54]

Фрактографический анализ поясняет различия в уровнях ударной вязкости между образцами, обработанными по различным режимам. Не говоря о преимущественном характере разрушения (вязком, хрупком), на образование расслоев затрачивается дополнительная энергия копра, причем в случае вязкого расслоения эта энергия тратится не только на создание новых поверхностей раздела, но и на предшествующую пластическую деформацию. Аналогичные расслои — расщепления — описаны в работах [44, 129], причем количество, глубина и протяженность этих расщеплений возрастают с понижением температуры окончания прокатки, что подтверждается полученными результатами. Происхож-  [c.176]

Для многих металлов, в первую очередь имеющих объемноцснтрирован-ную кубическую или гексагональную решетку, при определенных температурах изменяется механизм разрушения вязкое разрушение при высокой температуре смеияется хрупким. Температурный нитервал изменения характера разрушения называется порогом хладноломкости.  [c.73]

Понижение температуры практически не изменяет сопротивления отрт.шу 5от (разрушающего напряжения), но повышает сопротивление пластической деформации о.,. (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разруи1аться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка / пересечения кривых и а,., соответству-юп ан температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/п. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.53]

Положительные эффекты при сварке с РТЦ проявляются и по интехральным показателям сопротивления коррозионномеханическому разрушению (рис. 3.12). При фиксированном номинальном напряжении долговечность сварных соединений, выполненных с принудительным охлаждением, примерно в 2-3 раза превышает долговечность сварных соединеш1Й, выполненных с предварительным нагревом. Образцы с поперечным швом в случае сварки с подогревом (см. рис. 3.12, а -линия 1) разрушаются преимущественно по линии сплавления с характерным для коррозионного растрескивания хрупким изломом, а при сварке с охлаждением (рис. 3.12, а - линия 2) по металлу шва, и разрушение вязкое. В образцах с продольным швом (см. рис. 3.12, б) разрушение начинается с участков подкалки Чем больше (сварка с подогревом на  [c.153]


Анализ поведения материала с трещиной при циклическом нагружении требует учета контролирующего скорость роста трещины микромехаиизма, так как при реализации одного и того же макромеханизма ( например, типа I ) могут наблюдаться различные микромеханизмы усталостного разрушения квазивязкий отрыв - усталостные "вязкие" бороздки и квазихрупкий отрыв -усталостнь(е "хрупкие" бороздки (рис. 37, ), вязкий о трыв - ямочное разрушение, межзеренный хрупкий отрыв, внутризеренный хрупкий отрыв - скол.  [c.60]

В зависимости от сочетания различного рода неблагоприятных факторов при эксплуатации сварных конструкций имеют место вязкие, квазивязкие, хрупкие и квазихрупкие разрушения. Вязкие разрушения происходят в условиях общей текучести ослабленного дефектом сечения шва. Квазивязкие — когда большая часть ослабленного сечения сварного шва охвачена пластической деформацией, а остальная часть работает упруго. Хрупкие разрушения протекают при низком уровне приложенных напряжений на стадии упругой работы конструкций, а квазихрупкие — когда незначительная часть ослабленного сечения вблизи дефекта охвачена пластической деформацией. Термин квази в данном случае означает приближение к хрупкому либо вязкому разрушению,  [c.40]

Вид диаграмм а—е, которые строят для различных температур при е= onst, существенно изменяется для различных температур и скоростей деформации (рис. 239, 240). Подобного рода диаграммы были построены П. Людвиком и Н. Н. Давиденковым для объяснения перехода от вязкого разрушения к хрупкому и применены для анализа о—е диаграмм, а также соответственных предельных состояний при различных температурах и скоростях деформации.  [c.450]

С помощью предела трещиностойкости можно оценить материал по его способности тормозить трещину и можно рассчитывать детали с трещинами на прочность, независимо от вида возможного разрушения (вязкое или хрупкое). Здесь, однако, следует повторить уже известное соображение, что для оценки материалов и проведения расчетов предел трещиностойкости следует определять па образцах, наиболее приближающихся но своим основным параметрам к рассчитываемой детали. Такими параметрами, прежде всего, являются размеры и форма пластической зоны у вершины трещины, но поскольку практически это не подлежит контролю, то приходится говорить о равенстве толщин и о схожести напряженпых состояний в расчетных сечениях.  [c.284]

На рис. 1.4,6 нанесена также в координатах тах—Ymax бдиная кривая деформирования. Пересечение лучей с предельными прямыми на диаграмме механического состояния характеризует разрушение для случаев / и II — от среза, для случаев III и IV — от отрыва. При соответствующих значениях напряжения fmax по кривой деформирования можно определить деформации, сопутствующие разрушению. Чем больше напряженное состояние приближается к всестороннему растяжению, тем меньше оказывается пластическая деформация при разрушении, и вязкое разрушение сменяется хрупким. Отсюда следует, что на образование хрупкого состояния влияет тип напряженного состояния материала так возрастание нормальных растягивающих напряжений по сравнению с касательными повышает склонность материала к хрупкому разрушению.  [c.12]

Высказывалось предположение, что возможны случаи, когда предпочтительна слабая поверхность раздела. Согласно Куку и Гордону [12], поле напряжений у вершины развивающейся трещины включает не только главные напряжения, стремящиеся раскрыть трещину в направлении ее распространения, но и напряжения, стремящиеся раскрыть ее в перпендикулярном направлении. Значит, эти дополнительные напряжения могут раскрывать плоскости с ослабленной связью, пересекаемые магистральной трещиной. Эм бери и др. [17] применили эти представления к случаю разрушения слоистых композитов. Они показали, что в пакете стальных листов распространение трещины задерживается процессом расслаивания это приводило к важному результату — снижению температуры перехода от вязкого разрушения к хрупкому более чем на 100 К. Эти исследования были продолжены Олмондом и др. [2], которые получили ряд новых данных об указанном типе структур, тормозящих распространение трещины. По очевидным соображениям аналогичный подход применим и к волокнистым композитам этот вопрос рассмотрен в гл. 7 в связи с проблемой разрушения. Значительные объемы композита, расположенные по обе стороны от магистральной трещины, могут быть охвачены одновременным действием различных механизмов разрушения, а в таких случаях, как показали Эдсит и Витцелл [1] на примере композитов алюминий — бор, вязкость разрушения композита может превосходить вязкость разрушения металлической матрицы.  [c.25]

КОН бора проводились на воздухе они отчетливо выявили заметное снижение прочности при температуре ниже 811 К [37, 38]. С обнаружением интенсивной реакции между волокнами бора и расплавленной окисью бора (температура плавления 727 К) стало ясно, что одна из возможных причин разупрочнения — поверхностная реакция с воздухом. Последующие исследования проводились в атмосфере аргона, но предпринятые для исключения влияния кислорода меры были, как правило, недостаточны [И]. Напротив, если волокнО бора находится в титановой матрице, доступ кислорода к нему практически исключен это обстоятельство позволяет ответить на вопрос, применимы ли многие из этих характеристик прочности изолированных волокон к волокнам в составе композита. Роуз [28] начал в лаборатории автора работу по измерению прочности волокон бора при растяжении и сдвиге в высоком вакууме (<1,3-10- Па). Затем в статье Меткалфа и Шмитца [20] были приведены кривые температурной зависимости модуля и прочности при растяжении они представлены на рис. 13. Значения прочности были получены при кратковременном испытании с предварительной пятиминутной выдержкой при температуре испытания. Слабое увеличение прочности при повышении температуры от комнатной до 811 К объясняли тем, что приблизительно при этой температуре происходит переход от вязкого разрушения к хрупкому. С такой интерпретацией согласуются наблюдения Роуза о том, что пластическая деформация предшест-  [c.163]


Смотреть страницы где упоминается термин Разрушение вязкое, хрупкое : [c.41]    [c.57]    [c.230]    [c.104]    [c.278]    [c.433]    [c.446]    [c.181]    [c.207]   
Основы металловедения (1988) -- [ c.42 ]



ПОИСК



Бора волокна, переход от вязкого разрушения к хрупкому

Время вязкого разрушения вязко-хрупкого разрушения тонкостенной трубы

Время вязкого разрушения хрупкого разрушения круглого

Время вязкого разрушения хрупкого разрушения растянутого стержня

Время вязкого разрушения хрупкого разрушения тонкостенной трубы

Критерии сопротивления хрупкому, квазихрупкому и вязкому разрушению

Механическое напряжение. Прочность. Деформация. Хрупкое и вязкое разрушение. Ударная вязкость Усталость. Ползучесть. Износ. Твердость

ПЕРЕХОД ОТ ХРУПКОГО СКОЛА К ВЯЗКОМУ РАЗРУШЕНИЮ УДАРНЫЕ ИСПЫТАНИЯ И ВЯЗКОЕ РАЗРУШЕНИЕ Переход от хрупкого разрушения сколом к вязкому волокнистому разрушению

Переход от хрупкого разрушения к вязкому

Признаки хрупкого и вязкого разрушения

Разрушение вязкое

Разрушение вязкое — Переход к хрупкому— Схема

Разрушение хрупкое

Труба Время вязко-хрупкого разрушения

Условия перехода металлов из вязкого в хрупкое состояОценка сопротивления пластичных металлов хрупкому разрушению

Хрупкое и вязкое разрушение полимеров

Энергетическая схема вязкого и хрупкого разрушения



© 2025 Mash-xxl.info Реклама на сайте