Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение вязкое — Переход к хрупкому— Схема

Разрушение вязкое — Переход к хрупкому — Схема 341 Разъёмные соединения 754—863 Рамы — Перемещения — Определение  [c.1087]

В действительности приведенная на рис. 19.8.1 схема реализуется не всегда, у некоторых материалов отсутствует участок вязкого разрушения, у других, наоборот, во всем диапазоне напряжений разрушение носит вязкий характер. Не всегда переход от вязкого разрушения к хрупкому происходит сразу в точке В диаграммы. В окрестности этой точки обычно бывает область смешанных разрушений, которой на диаграмме соответствует показанная штриховой линией кривая.  [c.673]


Переход от вязкого к хрупкому разрушению зависит от типа напряженного состояния, свойств материала и условий его работы. Для качественной характеристики типа разрушения используются а) схема условий разрушения по  [c.484]

Переход от вязкого к хрупкому разрушению зависит от типа напряжённого состояния, свойств материала и условий его работы. Для качественной характеристики типа разрушения используются а) схема условий разрушения по Н. Н. Давиденкову и диаграмма механического состояния Я. Б. Фридмана, б) характер огибающих предельных (по прочности) кругов напряжений.  [c.341]

А. Ф. Иоффе Снятие поврежденного поверхностного слоя образца приводит к. повышению его прочности. Предложена схема, поясняющая переход вязкого разрушения в хрупкое с понижением температуры. Введено понятие критической температуры хрупкости  [c.479]

Интерес к исследованию механического двойникования был обусловлен началом в 60-е годы широкого изучения исключительно важного в практическом отношении явления хрупкого разрушения материалов и конструкций в условиях низкотемпературной деформации. Двойникование в этом вопросе рассматривалось с двух альтернативных позиций во-первых, как одна из вероятных причин вязко-хрупкого перехода, а, во-вторых, как потенциальный способ повышения низкотемпературной пластичности материала. Поэтому одной из основных задач физики прочности того периода стало изучение общих закономерностей пластической деформации и разрушения при механическом двойниковании. Одно из первых решений указанной задачи было предложено в работе [121] в виде схемы перехода от скольжения к двойникованию в поликристаллах. Построение схемы основывалось на данных работы [117] и собственных результатах авторов [121], полученных при низкотемпературном растяжении армко-железа со скоростями 10 — 10 с .  [c.57]

Смена вязкого вида разрушения хрупким - суть хладноломкости материалов (в частности, с ОЦК решеткой). Переход твердого тела в хрупкое состояние в 1924 г. был впервые описан А.Ф. Иоффе. Согласно предложенной им схеме (рис. 2.1), существует параметр, характеризующий сопротивление твердого тела хрупкому разрушению - сопротивление отрыву или хрупкая прочность. Величина S p в пределах точности ее определения не зависит ни от температуры, ни от скорости нагружения, а предел текучести Довольно круто возрастает при понижении температуры, приближаясь к значениям хрупкой прочности, и при температуре пересечения кривых = /(Т) и Од 2 = f(T) происходит смена механизмов разрушения.  [c.23]


Условия разрушения твердых тел легче анализировать, оперируя данными о предельной деформации, а не о предельном напряжении, как это принято, например, в теории дислокации. Разрушение (местное или общее) наступает при достижении предельной удельной объемной деформации или предельной объемной энергии [63], приводящей к потере межатомной связи. Увеличение местной деформации может происходить в результате накопления и торможения дислокаций у естественных препятствий в кристаллитах, в частности у границ зерен. Предельная деформация, накопленная у мест концентрации дислокаций или в результате их слияния, вызывает образование трещины. В настоящее время предложен ряд схем, показывающих условия зарождения трещин в результате торможения, накопления и слияния дислокаций. Согласно этим схемам трещины могут возникать или под углом к плоскости скольжения дислокаций, или вдоль этой плоскости (рис. 45). Случаи местных разрушений вдоль плоскости скольжения хорошо известны (63]. Торможению, скоплению и слиянию дислокаций способствует снижение температуры растормаживанию, освобождению, вырыванию их скопления способствует повышение температуры. В этом заключается одна из причин перехода ряда металлов при деформации из вязкого в хрупкое состояние при снижении температуры.  [c.88]

В качестве показателя порога хрупкости (хладноломкости) принимают среднюю температуру внутри интервала Т -Т , когда в изломе содержится 50% вязкой (ямочной) составляющей Т о). Характер изменения энергетических характеристик при переходе от вязкого к хрупкому разрушению в определенном интервале температур в общем, наиболее частом случае соответствует схеме, показанной на рис. 17. В зависимости от выбранного критерия положение порога может быть различным. Во избежание путаницы и непонимания в настоящее время чаще всего употребляется критерий TsQ, так называемая температура полухрупкости.  [c.28]

Несмотря на сравнительно слабое развитие отечественных механических лабораторий дореволюционного периода и ограниченные материальные возможности, уже в первые годы деятельности советских научно-исследова-тельских институтов были достигнуты в ряде случаев важные результаты например, обоснование схемы перехода от вязкого к хрупкому разрушению твердых тел (А. Ф. Иоффе и др.), применение динамических способов измерения модуля упругости металлов, исследование усталости стали как фактора прочности металлоконструкций (К. К. Симинский и т. д.).  [c.35]

Испытания при повышенных скоростях удара. На фиг. 89 представлена схема копра для испытаний на ударный изгиб при скоростях от 5 до 100 м сек [5]. При достижении вращающимся тяжёлым диском 1 заданной скорости под боёк 3, укреплённый на диске приспособлением 2, подбрасывается образец 4. Испытание ненадрезанных образцов производится одинарным бойком, а надрезанных — двойным, чтобы не повредить образец над надрезом. Копёр не имеет приспособлений для измерения работы излома, так как потери энергии на сотрясение копра и сообщение живой силы обломкам образца при больших скоростях велики и не поддаются учёту. Критическая скорость, соответствующая переходу от вязких к хрупким разрушениям при испытании ненадрезанных образцов, легко определяется по характеру излома образцов.  [c.40]

Многие металлы (Ре, Мо, 2п и др.), имеющие ОЦК и ГПУ кристаллические решетки, в зависимости от температуры могут разрушаться как вязко, так и хрупко. Понижение температуры обусловливает переход от вязкого к хрупкому разрушению. Это явление получило название хладноломкости. Явление хладноломкости можно объяснить схемой А. Ф. Иоффе (рис. 57). Понижение температуры практически не изменяет сопротивления отрыву (разрушающего напряжения), но повышает сопротивление пластической деформации (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях, меньших, чем предел текучести. Точка пересечения кривых о. , и 5отр, соответствующая температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости, или порога хладноломкости ( ц. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.80]


Схема перехода из вязкого в хрупкое состояние, предложенная Е. М. Шевандиным (см. рис. 7.1, г), состоит из кривых истинных напряжений 5 = /(ijj), полученных при температуре испытания от -Ь20 до —196° С iAa для сталей, склонных к хрупкому разрушению. Схема похожа на схему Н. Н. Давиденко-  [c.256]

Многие металлы (Ре. У, Мо, 7п и др.). имеющие о.ц.к. или г.п.у. кри-стад.тические решетки, в зависихюсти от температуры могут разрушаться как вязко, так и хрупко. Понижение температуры обусловливает переход от вязкого к хрупкому разрушению. Это явление получило название хладноломкость. Явление хладноломкости может быть объяснено схемой А. Ф. Иофе (рис. 60). Понижение температуры без изменения сопротивления отрыву 5о,р (разрушающего напряжения) повышает сопротивление пластической деформации ст, (предел текучести). поэтому металлы, вязкие ири сравни гельно высоких температурах, могут при низких температурах разрушаться хрупко. В указанных условиях сопротив.тение отрыву досгигается при напряжениях, меньших, чем предел текучести. Точка пересечения кривых 5 ,р и сТг, соответствующая телшературе перехода метал- ш от вязкого разрушения к хрупкому, и наоборот, получила название критической те.мие-  [c.87]

На рис. 23 показана трещина хрупкого разрушения, распространение которой было приостановлено повышением те.мпературы испытаний. Переход от вязкого излолш к хрупкому в соответствии со схемами рис. 22 показан для мягкой углеродистой стали на рис. 24.  [c.29]

Схемы и описания установок даны в [183, 184]. Для всех методов испытаний был выбран единый цилиндрический образец. В работах Г. М. Сорокина показано, что механизм разрушения при ударно-абразивном изнашивании определяется большим количеством факторов энергией удара, физико-механическими характеристиками абразива, составом и свойствами испытуемого материала, степенью закрепленности абразивных частиц и т. д. [183—185]. Общепринятые характеристики прочности и пластичности (предел текучести, предел прочности, твердость, относительное удлинение, относительное сужение, ударная вязкость) неоднозначно влияют на износостойкость при ударно-абразивном изнашивании. Повышение прочности или пластичности сказывается благоприятно только до определенного порогового уровня. Дальнейшее увеличение этих характеристик приводцт к возрастанию износа, но причины понижения износостойкости различны. Если рост прочности сопровождается повышен115м вязкохрупкого перехода, то износ увеличивается за счет интенсификации хрупкого выкрашивания. Значительное повышение пластич-. ности приводит к падению износостойкости из-за активного пластического течения и сопутствующего наклепа. По-видимому, максимальной износостойкостью обладают сплавы, находящиеся На границе хрупкого и вязкого разрушения.  [c.109]

Лавинообразное разрушение корпуса теплообменника, находившегося под действием внутреннего давления, произошло в ноябре 1987 г., при остановке технологической линии. В момент, предшествующий разрушению, потока среды в межтруб-ном пространстве аппарата не было, однако в корпусе сохранялось рабочее давление (вероятнее всего жидкой фракции). Теплообменник представлял собой горизонтальный цилиндрический аппарат с двумя неподвижными трубными решетками, сферическими днищами и компенсатором на трубной части. Он рассчитан на эксплуатацию с некоррозионной средой под давлением в корпусе 3 МПа, в трубной части 3,8 МПа при температуре -18 °С. Корпус, днища и трубные решетки аппарата изготовлены из стали 09Г2С. Размеры теплообменника длина (между трубными решетками) 5000 мм диаметр 1200 мм толщина стенки корпуса 20 мм. В соответствии с технологической схемой обвязки Т-231 теплообменник эксплуатировался при температуре-36 °С. На основании анализа результатов исследований установлено следующее. Зарождение и докритический рост трещины, вызвавшей разрушение корпуса теплообменника, произошли на оси кольцевого шва обечайки в зоне приварки штуцера входа этановой фракции. Трещина развивалась вдоль оси кольцевого шва, и при достижении критической длины (200 мм) произошел переход в лавинообразное разрушение с разветвлением трещины по трем направлениям вдоль шва и в обе стороны поперек оси шва по основному металлу. Химический состав и механические свойства основного металла 09Г2С корпуса теплообменника в основном соответствовали требованиям НД. Температура перехода материала днища (Т50) в хрупкое состояние по данным серийных испытаний составила -20 °С. Для материала обечайки она составляет от О до -20 °С. При температуре -40 °С вязкая составляющая в изломе отсутствовала. Механические свойства металла швов и сварных соединений отвечали требованиям, предъявляемым НД к качеству сварных соединений сосудов и аппаратов.  [c.51]


Смотреть страницы где упоминается термин Разрушение вязкое — Переход к хрупкому— Схема : [c.52]    [c.18]    [c.410]    [c.71]   
Справочник машиностроителя Том 3 (1951) -- [ c.341 ]



ПОИСК



Переход от хрупкого разрушения к вязкому

Разрушение вязкое

Разрушение вязкое, хрупкое

Разрушение хрупкое

Схема вязко-хрупкого перехода



© 2025 Mash-xxl.info Реклама на сайте