Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергетическая схема вязкого и хрупкого разрушения

ЭНЕРГЕТИЧЕСКАЯ СХЕМА ВЯЗКОГО И ХРУПКОГО РАЗРУШЕНИЯ  [c.26]

В соответствии с этим представляется возможным предложить энергетическую схему вязкого и хрупкого разрушения, представленную на рис. 12, где по оси ординат отложена удельная энергия, а по оси абсцисс — скорость  [c.27]

Наблюдаемый одновременно эффект охрупчивания (снижение энергоемкости разрушения, повышение температуры хладноломкости и т. д.) менее удовлетворительно объясняется существующей теорией деформационного старения [7]. Блокирование дислокаций примесными атомами должно увеличивать вероятность возникновения и развития хрупких трещин, так как уменьшается возможность релаксации упругих напряжений за счет пластической деформации. При этом, как показано в работах [43, 44, 45, с. 157], возрастает интенсивность температурной зависимости предела текучести по сравнению с деформированным состоянием, что обычно связывают с увеличением склонности к хрупкому разрушению при снижении температуры нагружения. Однако хрупкость деформационно состаренной стали обьйчно оказывается более высокой не только по сравнению с деформированным, но и по сравнению с исходным состоянием (например, отожженным). В то же время блокировка дислокаций после отжига должна быть более сильной, чем после деформационного старения или, по крайней мере, одинаковой. Поэтому понимание природы охрупчивания при деформационном старении требует, по-видимому, более тщательного изучения природы влияния самой деформации на хрупкость. Это можно сделать, например, с помощью энергетических схем вязкого и хрупкого разрушения [46]. С возрастанием плотности дислокаций увеличивается величина упругой энергии, запасенной в металле. Эта величина, а следовательно, и плотность дислокаций не может превосходить определенного критического значения, которое определяется наступлением разрушения. С учетом неоднородности распределения дислокаций уже небольшая предварительная деформация может создать в отдельных объемах критическую плотность дислокаций. Если при последующем нагружении только некоторые из них релаксируют в трещину, то вследствие локальности процесса разрушения это уменьшит работу зарождения трещины. Степень релаксации упругих напряжений путем пластической деформации при развитии трещины будет меньше в деформационно состаренной стали не только вследствие блокировки дислокаций примесными атомами, но и вследствие более высокой исходной плотности самих дислокаций. Другими словами, достижение критической плотности дислокаций в деформационно состаренной стали требует меньшей дополнительной деформации, чем достижение указанной плотности в исходном (отожженном) состоянии. Это можно учесть в предлагаемых уравнениях хрупкого разрушения [7] через уменьшение величины эффективной поверхностной энергии стали после деформации и старения.  [c.28]


В качестве показателя порога хрупкости (хладноломкости) принимают среднюю температуру внутри интервала Т -Т , когда в изломе содержится 50% вязкой (ямочной) составляющей Т о). Характер изменения энергетических характеристик при переходе от вязкого к хрупкому разрушению в определенном интервале температур в общем, наиболее частом случае соответствует схеме, показанной на рис. 17. В зависимости от выбранного критерия положение порога может быть различным. Во избежание путаницы и непонимания в настоящее время чаще всего употребляется критерий TsQ, так называемая температура полухрупкости.  [c.28]


Смотреть страницы где упоминается термин Энергетическая схема вязкого и хрупкого разрушения : [c.29]   
Смотреть главы в:

Усталость и хрупкость металлических материалов  -> Энергетическая схема вязкого и хрупкого разрушения



ПОИСК



Разрушение вязкое

Разрушение вязкое, хрупкое

Разрушение хрупкое



© 2025 Mash-xxl.info Реклама на сайте