Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Криостат

Рис. 3.6. Криостат газового термометра НФЛ-75 [2]. А—гелиевая-ванна В — выводы для проводов С — вакуумная рубашка из нержавеющей стали О—медный изотермический экран Е — медная колба газового термометра Е — тепловые ключи к гелиевой ванне О — капилляр из нержавеющей стали диаметром 1 мм Н — вакуумная полость I — радиационные экраны 1 — отверстия для термометров сопротивления. Рис. 3.6. Криостат <a href="/info/3930">газового термометра</a> НФЛ-75 [2]. А—гелиевая-ванна В — выводы для проводов С — вакуумная рубашка из <a href="/info/51125">нержавеющей стали</a> О—медный изотермический экран Е — медная колба <a href="/info/3930">газового термометра</a> Е — тепловые ключи к гелиевой ванне О — капилляр из <a href="/info/51125">нержавеющей стали</a> диаметром 1 мм Н — вакуумная полость I — радиационные экраны 1 — отверстия для термометров сопротивления.

Рис. 4.15. Криостат для реализации тройной точки [38]. Обозначение элементов см. в тексте. Рис. 4.15. Криостат для реализации <a href="/info/18391">тройной точки</a> [38]. <a href="/info/81799">Обозначение элементов</a> см. в тексте.
Принцип действия криостата очень прост [37, 38, 66]. Теплоизолированная камера наполняется жидким водородом (либо используется уже конвертированный водород, либо внутри ка-  [c.156]

Криостат для измерения давления паров и соответственно точек кипения отличается от показанного на рис. 4.15 для реализации тройных точек. Схема типичного криостата для измерения давления паров приведена на рис. 4.17.  [c.157]

Необходимость выполнять измерение давления увеличивает сложность аппаратуры для реализации точки кипения по сравнению с аппаратурой для тройных точек. В процессе измерения давления качество регулирования температуры должно быть предельно высоким. С этой целью применяется относительно массивный медный блок, в котором размещены термометры и конденсационная камера. С другой стороны, реализация тройной точки основывается на ее собственной температурной стабильности в процессе плавления и, следовательно, относительно легком адиабатическом калориметре. Наклон кривой температурной зависимости давления насыщенных паров водорода возрастает от 13 Па мК при 17 К до 30 Па-мК- при 20,28 К- Поэтому для строгого определения точки 17 К измерению давления должно быть уделено больше внимания. Криостат должен быть сконструирован так, чтобы самая его холодная точка находилась в конденсационной камере и ни в коем случае не на манометрической трубке, связывающей камеру с манометром. Необходимо также введение поправки, обусловленной гидростатическим давлением газа в системе измерения давления. Она пропорциональна плотности газа и, следовательно, обратно пропорциональна температуре [см. уравнения (3,30) и (3.31) гл. 3,  [c.158]

Рис. 4.17. Криостат, применявшийся при изучении температурной зависимости давления паров водорода [37]. Обозначение элементов см. в тексте. Рис. 4.17. Криостат, применявшийся при изучении <a href="/info/191882">температурной зависимости</a> <a href="/info/85670">давления паров водорода</a> [37]. <a href="/info/81799">Обозначение элементов</a> см. в тексте.

Криостат, применяемый для точного воспроизведения точки кипения неона [35], показан на рис. 4.18. Элементы /—8 играют здесь ту же роль, что и на рис. 4.17, 9 — охлаждаемый газом теплообменник, температура которого регулируется с помощью платинового термометра сопротивления 19. Криостат подве-  [c.159]

Рис. 4.18. Криостат для реализации точки кипения неона [35]. Обозначение элементов см. в тексте. Рис. 4.18. Криостат для реализации <a href="/info/3839">точки кипения неона</a> [35]. <a href="/info/81799">Обозначение элементов</a> см. в тексте.
Поскольку концентрация примеси в различных фазах различна, в процессе конденсации или испарения происходит изменение состава пара над жидкостью. Газовая диффузия способствует восстановлению однородности состава, однако точка кипения смещается. Направление смещения зависит от относительной летучести примеси и от того, имеет ли место конденсация или испарение. Летучие примеси, такие, как азот, существенно понижают точку кипения при конденсации по сравнению с испарением. Криостат для реализации кислородной точки мало отличается от показанного на рис. 4.18. Подробное его описание можно найти в работах [25, 38].  [c.162]

В последние годы было проведено много работ по реализации тройных точек неона [5, 36], кислорода [2, 25, 38, 62], азота [36], аргона [3, 36, 62], метана [13], криптона [36] и. ксенона [6]. В настоящее время стала общепринятой точка зрения о преимуществе тройных точек перед точками кипения в качестве реперных. Для этого имеются две причины во-первых, отпадает необходимость в измерении давления, и, во-вторых, недавно разработаны очень удачные герметичные ячейки с тройными точками. Прежде чем перейти к вопросу о герметичных ячейках, рассмотрим методы, используемые при реализации тройных точек, указанных газов в классическом криостате для тройных точек, показанном на рис. 4.15.  [c.162]

На рис. 4.19 приведены результаты измерений, полученные в процессе плавления азота в криостате, показанном на рис. 4.15. Плато / и 2 были получены при тепловых импульсах, составляющих 10 % от полной теплоты плавления образца [36]. Продолжительность теплового импульса 25 мин, время выдержки после каждого импульса 138 мин. В начале процесса плавления включение теплового импульса приводило к перегреву порядка 1 мК, в конце плавления перегрев возрастал до 10 мК. Это показано на рисунке четырьмя сплошными линиями для различных отрезков времени эксперимента. Было най-  [c.163]

Рис. 4.20. Криостат с герметичной ячейкой тройной точки. Герметичная ячейка 6 подвешена в криостате на нейлоновых нитях внутри золоченого радиационного экрана 5. Серебряная проволока 1 соединяет экран с наружной ванной жидкого азота. Рис. 4.20. Криостат с герметичной ячейкой <a href="/info/18391">тройной точки</a>. Герметичная ячейка 6 подвешена в криостате на нейлоновых нитях внутри золоченого радиационного экрана 5. Серебряная проволока 1 соединяет экран с наружной ванной жидкого азота.
В отличие от фазовых переходов первого рода, таких, как точки плавления или кипения, при фазовых переходах второго рода отсутствует скрытая теплота перехода. Поэтому такие переходы используются лишь как индикатор определенной температуры, а не способ ее поддержания. При затвердевании чистых металлов, которое обсуждается ниже, образец металла будет оставаться при температуре затвердевания, хотя его окружение охлаждается. В случае сверхпроводящих переходов отсутствие скрытой теплоты перехода не создает серьезных проблем. Это объясняется тем, что при низких температурах легко обеспечить необходимую точность терморегулирования, а теплоемкости и теплопроводности материалов таковы, что неоднородности температуры в криостате и инерционность объектов регулирования не создают никаких затруднений.  [c.168]


Важной задачей при разработке различного криогенного электрооборудования является организация эффективного охлаждения токовводов. Основной способ ее решения заключается в использовании паров испаряющегося в криостате гелия для продольного охлаждения проницаемого токоввода. Одна из первых конструкций -это токоввод из собранного в жгут набора проволочных оплеток.  [c.17]

Криостат —это термостат для поддержания температуры ниже 0° С (например, сосуд Дьюара).  [c.178]

Рис. 3.20. Схема криостата Сетаса и Свенсона для магнитной термометрии [10]. А—вывод электрических проводов В — промежуточный экран С — термодатчик О — экран блока Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из кварцевого стекла / — медные провода К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — радиационный экран из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — германиевый термометр сопротивления и — медный блок V—платиновый термометр сопротивления — жидкий Не Z — откачка паров Не. Рис. 3.20. Схема криостата Сетаса и Свенсона для <a href="/info/4002">магнитной термометрии</a> [10]. А—вывод <a href="/info/94293">электрических проводов</a> В — промежуточный экран С — термодатчик О — <a href="/info/73889">экран блока</a> Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из <a href="/info/63118">кварцевого стекла</a> / — <a href="/info/63788">медные провода</a> К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — <a href="/info/251815">радиационный экран</a> из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — <a href="/info/425226">германиевый термометр сопротивления</a> и — медный блок V—<a href="/info/251578">платиновый термометр сопротивления</a> — жидкий Не Z — откачка паров Не.
На рис. 3.22 и 3.23 схематически изображены конструкция конденсатора, помещенного внутрь ячейки, и устройство криостата газового термометра Гьюгена и Мичела для измерения диэлектрической проницаемости. Конденсатор выполнен из меди и представляет собой два коаксиальных цилиндра с зазором 1,5 мм. Емкость конденсатора составляла 10 пФ, что по-  [c.132]

Рис. 3.22. С хема криостата Гью-гена и Мичела для газового термометра с измерением диэлектрической проницаемости [30]. А — изотермический экран из меди с высокой теплопроводностью В — блок с термометрами из меди с высокой теплопроводностью, =10 см, й=10 см С — ячейка конденсатора (одна или две) О — отверстия для железородиевых, платиновых и германиевых термометров сопротивления Е — холодный вентиль (один для каждой ячейки) Е — герметичный вывод измерительных проводов О — радиационный экран Н — вакуумная рубашка из нержавеющей стали, =17,5 см, уплотняющаяся с помощью индиевой прокладки / — манометрическая трубка из нержавеющей стали, =1,5 мм, проходящая внутри главной откачной трубы, = =37,5 мм /- теплоотвод от / К — термопара Ацре/хромель (одна из четырех вдоль трубки/). Рис. 3.22. С хема криостата Гью-гена и Мичела для <a href="/info/3930">газового термометра</a> с <a href="/info/282258">измерением диэлектрической проницаемости</a> [30]. А — изотермический экран из меди с высокой теплопроводностью В — блок с термометрами из меди с высокой теплопроводностью, =10 см, й=10 см С — ячейка конденсатора (одна или две) О — отверстия для железородиевых, платиновых и <a href="/info/425226">германиевых термометров сопротивления</a> Е — холодный вентиль (один для каждой ячейки) Е — герметичный вывод измерительных проводов О — <a href="/info/251815">радиационный экран</a> Н — вакуумная рубашка из <a href="/info/51125">нержавеющей стали</a>, =17,5 см, уплотняющаяся с помощью индиевой прокладки / — манометрическая трубка из <a href="/info/51125">нержавеющей стали</a>, =1,5 мм, проходящая внутри главной откачной трубы, = =37,5 мм /- теплоотвод от / К — термопара Ацре/хромель (одна из четырех вдоль трубки/).
Типичное устройство, используемое для реализации тройной точки водорода, показано на рис. 4.15. В этом криостате 1 — наружная вакуумная рубащка 2 — наружный экран, температура которого регулируется 3 — камера с образцом. Камера  [c.155]

Возможно, хотя технически несколько сложнее, свести гидростатическую поправку к нулю. Это достигается при горизонтальном расположении участка манометрической трубки, имеющей температурный градиент. Без такого усоверщенствования вели чина гидростатической поправки в типичном криостате конденсационного термометра имеет порядок 3 Па при 17 К и 1 Па при 20 К. При проведении измерений с водородным термометром следует обратить внимание на погрещности, связанные с неконвертированным или частично конвертированным газом. Если, например, температура криостата падает, газ будет поступать в конденсационную камеру и для обеспечения быстрой его конверсии необходимо иметь достаточное количество катализатора.  [c.159]

Влияние примесей на точку кипения неона также невелико. Гелий легко удаляется из образца при его замораживании и откачке, хотя примеси водорода при этом остаются. Присутствие 2-10 % водорода понижает точку кипения на 0,1 мК-Извлечь водород из неона непросто, однако Энксин [5] показал, что в его криостате, где имеется большой объем с парами, отделенный от конденсационной камеры узкой трубкой, водород быстро откачивается, оставляя чистой поверхность жидкость— пар неона. Присутствия азота и других нелетучих газов в неоне относительно легко избежать, поддерживая при конденсировании неона в камеру входную трубку достаточно холодной для вымораживания на ней примесей.  [c.161]

Основные принципы при работе с таким криостатом оказываются общими для всех %тих газов и мало отдичаются от изложенных для водорода. Тепловые потери для почти адиабатической камеры с образцом поддерживаются возможно малыми путем регулирования тепловых экранов в вакуумной камере. Как и в случае водорода, калориметр заполняется, охлаждается ниже тройной точки и выдерживается несколько часов до установления равновесия. Кривая плавления получается таким же образом, как и в случае водорода, подачей последовательных тепловых импульсов. Величина каждого теплового импульса должна составлять от 1 до 10 % тепла, необходимого для полного расплавления образца. Оптимальные параметры теплового импульса в сочетании со временем, необходимым для установления теплового равновесия после его выключения, должны быть найдены опытным путем для каждого газа. Примерные значения скрытой теплоты плавления для рассматриваемых газов представлены в табл. 4.5.  [c.162]

В 1975 г. был продемонстрирован новый метод реализации тройной точки аргона [14, 16, 61]. Вместо криостата типа показанного на рис. 4.17 авторы предложили герметичную ячейку, раз и навсегда заполненную определенным количеством газа. Ячейка, показанная на рис. 4.20, предназначена для использования в качестве легкс транспортируемого устройства для воспроизведения тройной точки с высокой точностью. Ячейка работает в криостате в режиме, близком к адиабатическому, и применяется точно таким же образом, как обычная аппаратура для реализации тройных точек. Ячейка должна выдерживать давление около 80 атм при заполнении при комнатной температуре.  [c.164]


Хотя полость черного тела является идеальным тепловым излучателем, для воспроизведения и передачи МПТШ-68 она не всегда удобна. Для части МПТШ-68, определяемой реперными точками и термометром сопротивления, именно он служит для поддержания и передачи шкалы, а не печь, масляная ванна или криостат. Различие между двумя частями шкалы принципиально. В нижней части МПТШ-68 величина Тее определяется через характеристики термометра, т. е. через W(Tei) и Е Тв8)-При более высоких температурах Т а определяется свойствами излучателя в виде черного тела, а не прибором, применяемым в качестве термометра. Согласование с определением шкалы значительно лучше, если она поддерживается воспроизводимым излучателем, а не прибором, который измеряет излучение. Действительно, воспроизведение и передача шкалы с помощью при-  [c.349]

Интенсификация теплообмена особенно необходима в криогенных системах, где только так можно свести к минимуму площадь наружных поверхностей теплообменной аппаратуры. Некоторые из разработанных ранее теплообменных устройств с пористым заполнителем внутри каналов или в межгрубном пространстве созданы специально для криогенных температур. Например, в теплообменнике (см. рис. 1.10, а) во избежание снижения его эффективности за счет продольной теплопроводности пористый материал выполнен не сплошным, а в виде последо-вателыю расположенных отдельных вставок. Кроме того, с этой же целью в гелиевых проточных криостатах предложено использовать сетчатые металлические вставки с ярко выраженной анизотропией теплопроводности, у которых продольная теплопроводность значительно меньше поперечной.  [c.17]

Схема опыта Мёссбауэра изображена на рис. 61,6. Здесь И — источник у-излучения Гг с энергией 12 9 кэв, П — иридиевый поглотитель, Д — детектор. Источник и поглотитель были помещены в криостаты и Кг, в которых поддерживалась температура Т = 88° К. Криостат /Сг с источником мог вращаться. При вращении его в одну сторону источник приближался к поглотителю с некоторой скоростью v, а при вращении в другую сторону удалялся от него с той же скоростью.  [c.178]

Agl—холоднотянутый образец Ag2—образец отожжен при 650° С Agil—образец еще раз протянут в холодном состоянип Ag4—образец повторно отожжен при 650 С Ag5—образец вынут из криостата и снова вставлен. Сплошная кривая, для Agl и пунктирная для Ag3 даны в увеличенном масштабе.  [c.268]

А—криостат В—термометр С—трубка, идущая к диффузионному насосу D—вводы проводов i —вакуумцаи камера F—сердечник, встав-лениый в образец G—нагреватель Н—калориметр.  [c.333]

В большинстве случаев в качестве высокочастотного генератора используется отражательный клистрон. Энергия генерируемых колебаний чере коаксиальный кабель или волновод подводится к резонансной полости, расположенной между полюсными наконечниками электромагнита. В случае больших длин волн для ввода энергии в криостат используют коаксиальную линию, так как волновод создал бы излишний подвод тепла к охлаждающей ваипе. В случае коротких длин волн используются волноводы. Резонансная полость соединяется вторым коаксиальным кабелем или волноводом с детектором, измеряющим интенсивность выходного сигнала. На фиг. 22 схематически изображен криостат, предназначенный для исследования парамагнитного резонанса.  [c.408]

Дебай и Джиок показали, что для некоторых парамагнитных солей очень хорошо выполняются требования, изложенные в п. 1. Если магнитные ионы, имеющиеся в решетке соли, достаточно удалены друг от друга ( разбавлены ), так что энергия их взаимодействия весьма мала по сравнению с тепловой энергией при температуре 1 ° К, то пространственная ориентация ионов при этой температуре является еще хаотической, и энтропия имеет значительную величину. В магнитном поле, при котором потенциальная энергия магнитных ионов имеет тот же порядок величины, что и их тепловая энергия, большая часть ионов ориентирована параллельно полю, и энтропия заметно ниже, чем в отсутствие поля. Следовательно, если такая соль изотермически (в тепловом контакте с криостатом, заполненным жидким гелием) намагничивается, а затем адиабатически (при разомкнутом тепловом контакте с жидким гелием) размагничивается, то температура соли падает значительно ниже температуры жидкого гелия. Внешним параметром при этом процессе является магнитное поле, а характеристической температурой 0—температура Кюри или Ноэля для данной соли.  [c.423]

Для исследований открылась совершенно новая область температур, и, поскольку методика работы в области температур, получаемых адиабатическим размагничиванием, сильно отличается от методики работы при более высоких температурах, встретились новые экспериментальные трудности. Криостат, заполненный ожиженным газом, обладает многими достоинства-Аш, Между жидкостью и погруженным в нее объектом исследования имеется хороший тепловой контакт распределение температуры достаточно однородно, причем степень однородности можно улучшить путем перемешивания температура может поддерживаться постоянной при желаемом значении путем ре] улировапия давления, при котором кипит жидкость. Паразитный приток тепла вызывает лишь испарение жидкости при постоянной температуре и, паконец, упругость пара жидкости представляет собой удобный вторичный термометр, который может быть прокалиброван сравнением с газовым термометром. Все эти преимущества при использовании парамагнитной соли в качестве охлаждающего вещества теряются. В последнем случае приток тепла приводит к повышению температуры, и, поскольку парамагнитная соль при более низких температурах обладает очень незначительной i еплопроводностью (см. п. 19), этотприток тепла может заметно нарушить однородность распределения температуры. По той же причине качество теплового контакта между солью и объектом исследования при более низких температурах вызывает сомнение. В области температур, достигаемых размагничиванием, определение термодинамической температуры само по себе становится серьезной задачей.  [c.424]

Соль помещается в контейнер — трубку, погру>1 енную в жидкий гелий. В период изотермического намагничивания осуществляется тепловой контакт соли с гелиевой ванной обычно для этой цели в коптепиер вводится некоторое количество газообразного гелия. Перед размагничиванием создаются условия теплоизоляции, для чего газ откачивается. Криостат располагается либо в межполюсном пространстве электромагнита, либо по оси очень мощного соленоида. Поскольку исходная температура должна быть как можно более низкой, гелии испаряется под пониженным давлением. Для этой цели используется вакуумный насос большой мощности и линия откачки большого диаметра.  [c.444]

В настоящем разделе мы ограничимся описанием аппаратуры, используемой для получения и измерения самых низких темнератур, а ингенио криостатов и установок для их откачки, методов теплоизолирования образца, конструкции магнитов, мостиковых схем. Вспомогательные вопросы, например методы осуществления теплового контакта между солью и другими веществами, п аппаратура, необходимая для проведения исследований с этими веществами, будут описаны в разделе 6 (см. также п. 50).  [c.445]

Дьюары и вакуумные насосы. Дьюаровские сосуды для жидкого гелия могут быть изготовлены как из стекла, так и из металла. Иа фиг. 4 приведена схема стеклянного криостата для размагничивания, применяемого в лаборатории Камерлинг-Опнеса в Лейдене. Он состоит из двух коак-сиально расположенных дьюаров. Во внутреннем дьюаре содержится жидкий гелий, внешний дьюар заполняется жпдким водородом или азотом для защиты гелия от притока тепла. К верхним частям дьюаровских сосудов прикреплены легкоплавкой замазкой латунные кольца, плотно входящие в металлические крышки (каики) это обеспечивает жесткость крепления дьюаров относительно магнита. Дьюары обычно имеют более узкую нижнюю часть ( хвост ) такие дьюары содержат большое количество охлаждающей жидкости и в то же время могут располагаться в магните со сравнительно небольшим межполюсным зазором.  [c.445]


Схема хвостовой части металлического криостата Кларендонской лаборатории в Оксфорде показана на фиг. 5. Криостат для размагничивания изготовлен как одно целое с экспансионным ожижителем Симона (последний на фиг. 5 не показан). Стеклянный дьюар V содержит жидкий водород, в который погружен как сам ожижитель так и гелиевый сосуд В.  [c.445]


Смотреть страницы где упоминается термин Криостат : [c.128]    [c.154]    [c.156]    [c.159]    [c.167]    [c.243]    [c.8]    [c.179]    [c.408]    [c.444]    [c.444]    [c.445]    [c.445]    [c.445]    [c.446]    [c.446]   
Физика низких температур (1956) -- [ c.424 , c.444 , c.445 , c.447 , c.456 , c.457 , c.510 , c.573 , c.785 ]

Испытание электроизоляционных материалов и изделий (1980) -- [ c.138 ]

Основные термины в области температурных измерений (1992) -- [ c.0 ]

Металловедение и технология металлов (1988) -- [ c.87 , c.91 , c.94 ]

Справочник по электротехническим материалам (1959) -- [ c.13 ]



ПОИСК



Дюрчолз Р. Л. Криостат и измерение деформации в процессе испытаний на растяжение при температурах до

Камеры для испытаний при отрицательных температурах (криокамеры, криостаты)

Конструкция, параметры и недостатки отпаянного саморазогревного АЭ ТЛГ-5 первого промышленного ЛПМ Криостат

Криостат 307 — Типы 309, 310 Характеристики

Криостат азотный

Криостат гелиевый

Криостат с односторонним вводом захвато

Криостаты для адиабатического размагничивания

Криостаты с жидким гелием или жидким водородом

Обезгаживание прогревом криостатов

Охлаждение криостатов

Охлаждение криостатов заливкой хладагента

Охлаждение криостатов с помощью микрокриогенной

Охлаждение криостатов системы

Соковиков. Криостат для металлографических исследований при низкотемпературном деформировании



© 2025 Mash-xxl.info Реклама на сайте