Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Длина свободного пробега в диэлектриках

В отличие от диэлектриков, где длина свободного пробега фононов при низких температурах, в основном, определяется размерами образца, Б металлах длина свободного пробега электронов при этих температурах определяется дефектами и примесями. Это связано с тем, что энергия электронов (вблизи энергии Ферми), переносящих теплоту, слабо зависит от температуры [формула (6.57)]. Длина волны де Бройля Х=И/(mv ) таких электронов — порядка средних межатомных расстояний, поэтому электроны сильно рассеиваются на дефектах атомных размеров и средняя длина свободного пробега <Хэл> ограничена этими размерами.  [c.196]


При низких температурах теплопроводность твердого тела существенно зависит от количества и типа примесей, дефектов решетки. Это обусловлено тем, что при низких температурах электроны в металлах сильно рассеиваются на дефектах атомного масштаба, а фононы в диэлектриках — на дефектах с размерами несколько сотен межатомных расстояний. В совершенных диэлектрических кристаллах при температурах около 1 К длина свободного пробега фононов сравнима с размерами образца (обычно равна примерно 5 мм). В этом случае теплопроводность зависит от характера процессов рассеяния фононов на границах образца и его размеров.  [c.339]

В аморфных диэлектриках в широком диапазоне температур длина свободного пробега фононов ограничена рассеянием на дефектах структуры. Теплопроводность аморфных тел значительно меньше, чем теплопроводность кристаллов. Поликристаллические тела обладают промежуточной теплопроводностью между теплопроводностями монокристаллов и аморфных тел.  [c.339]

Большая подвижность может быть обусловлена малой эффективной массой носителя заряда т и большим временем свободного пробега или, точнее, временем релаксации Tq. В полупроводниках элективная масса носителей заряда может быть как больше, так и меньше массы свободного электрона. Время релаксации, характеризующее спадание тока после снятия поля, обусловливается процессами рассеяния движущихся в полупроводниках электронов. Чем больше частота столкновений и чем они интенсивнее, тем меньше время релаксации, а следовательно, и подвижность. При комнатной температуре средняя скорость теплового движения свободных электронов в невырожденном полупроводнике и в диэлектрике (если они в нем имеются) около 10 м/с. При этом эквивалентная длина волны электрона будет около 7 нм, тогда как в металлах она составляет примерно 0,5 нм. Таким образом, вследствие большей длины волны электрона в полупроводнике и в диэлектрике по сравнению с металлом, неоднородности порядка размеров атома мало влияют на рассеяние электронов. У некоторых чистых полупроводников подвижность может быть очень большой, 10 м /(В-с) и выше, у других она меньше 10" mV(B- ). Вычисляемая по последнему значению длина свободного пробега составляет лишь долю межатомных расстояний в решетках. Физический смысл требует, чтобы длина свобод-  [c.240]

Отдельные составляющие твердой фазы теплозащитного материала могут находиться в кристаллическом либо в аморфном состоянии. Механизм переноса тепла в этих состояниях резко отличен. В свою очередь кристаллы подразделяются на проводники и диэлектрики в зависимости от того, что является основным носителем тепловой энергии электроны или колебания кристаллической решетки — фононы. В последнем случае проводимость определяется длиной свободного пробега, т. е. расстоянием, на котором сохраняется правильная структура кристаллической решетки или так называемый дальний порядок. Аморфные диэлектрики, у которых зерна кристаллов расположены хаотично, имеют меньший коэффициент теплопроводности по сравнению с кристаллическими диэлектриками, у которых структура более упорядочена. При 50 К коэффициент теплопроводности кристаллического кварца в 150 раз выше, чем у аморфного кварцевого стекла.  [c.75]


Для механизма ударной ионизации характерна зависимость электрической прочности от толщины диэлектрика при этом, чем больше толщина, тем слабее влияет ее увеличение на электрическую прочность. В силу малой длины свободного пробега электронов в твердых телах (по Плес-неру для слюды она составляет 0,5 -10 см) рост электрической прочности с уменьшением толщины может быть заметен только при очень малых толщинах. Ниже показана ависимость электрической прочности кристаллов фтористого кальция от толщины при импульсах напряжения продолжительностью 10 мксек.  [c.80]

Отсюда ясно, что длина свободного пробега обратно пропорциональна давлению газа. Понятие длины свободного пробега играет важную роль в теории переноса газов. Это понятие широко применяется для описания явлений и процессов в вакуумной физике, для объяснения теплопроводности и электропроводности металлов, пробоя диэлектриков, электропроводности газов и т. д.  [c.47]

Медленная Р. в жидкостях и тв. телах также описывается ур-ниями гидродинамики, диффузии, теплопроводности и т. д., однако релаксац. и кинетич. коэфф. в случае обычных жидкостей не могут быть в общем случае выражены через вероятности микроскопич. процессов. В случае квантовых жидкостей и кристаллов кинетич. коэфф. выражаются через вероятности столкновений квазичастиц. Напр., теплопроводность диэлектрика пропорц. длине свободного пробега фононов, а электропроводность металлов и ПП — длине пробега эл-нов проводимости. Квазичастицы имеют конечные времена жизни, к-рые могут служить для оценки времён Р. в тв. телах (напр., время Р. полупроводника после выключения освещения определяется временем рекомбинации эл-нов и дырок).  [c.633]

Т. ТВ, тел имеет разл, природу в зависимости от типа тв. тела, В диэлектриках, не имеющих свободных электрич. зарядов, перенос энергии теплового движения осуществляется фононами. У ТВ. диэлектриков Я vl, где с — теплоёмкость диэлектрика, совпадающая с теплоёмкостью газа фононов, v — ср, скорость фононов, приблизительно равная скорости звука, I — ср. длина свободного пробега фононов. Существование определённого конечного значения 1 следствие рассеяния фононов на фононах, на дефектах крист, решётки (в частности, на границах кристаллитов и на границе образца). Температурная зависимость X определяйся зависимостью от темп-ры си/.  [c.748]

Выше 0,6° к теплопроводность возрастает более резко и оказывается зависящей от градиента температуры. В общем явление здесь протекает так же, как это описывалось в предыдущем пункте. Это возрастание теплопроводности соответствует росту теплоемкости, наблюдаемому при той же температуре, и, очевидно, происходит вследствие поя1 ления возбуждений, отличных от фононного. Ниже 0,6° К теплопроводность не зависит от градиента температур и соответствует изменению теплоемкости с температурой. Различие теплопроводности для двух капилляров с разными диаметрами связано, по-видимому, е неодинаковой средней длиной пробега фонона, являющейся величиной порядка диаметра. Этот эффект вызван, таким образом, рассеянием фононов на границах образца он наблюдался также па твердых диэлектриках при низких температурах. Результаты опытов, по-видимому, согласуются с теорией Ландау и Халатникова в том, что средняя длина свободного пробега, сильно влияющая па вязкость и теплопроводность, при низких температурах становится очень большой. Это замечание оказывается существенным и при изучении поведения второго звука при самых низких температурах, которое будет рассмотрено в следующем разделе.  [c.848]

Электрический пробой, в процессе которого диэлектрик разрушается силами, действующими в электрическом поле на электрические заряды его атомов, ионов или молекул. Этот вид пробоя протекает в течение 10 — 10 с, т. е. практически мгновенно. Ом вызывается ударной ионизацией электронами. На длине свободного пробега К электрон в электрическом поле приобретает энергию W еЕк, где е заряд электрона. Если энергия электрона достаточна для ионизации, то электрон при соударении с атомами, ионами или молекулами, из которых состоит диэлектрик, ионизирует их. В результате появляются новые электроны, которые также ускоряются электрическим полем до энергии WТаким образом, количество свободных электронов лавинно возрастает, что приводит к резкому повышению проводимости и электрическому пробою. Плотность жидких и твердых диэлектриков больше плотности газообразных, а поэтому д ина свободного пробега электронов в них меньше. Для того чтобы электрон приобрел энергию W, ,, в жидком и твердом диэлектриках нужна большая напряженность электри-  [c.169]


Жидкие диэлектрики отличаются значительно более высокой электрической прочностью, чем газы, несмотря на большую зависимость электрических свойств жидкостей от загрязнений, которые в, газообразном состоянии почти не изменяют электрической прочности газа. Основной причиной более высокой прочности жидких диэлектриков является их более высокая (в 2000 раз) плотность и значительно меньшие расстояния между молекулами. Однако примеси полярных жидких (эмульсии) или твердых (суспензии) веществ порождают новые формы теплового НЛП ноннзацнонпого (в случае газообразных включений) иробоя, которые снижают пробивное напряжение даже неполярных жидкостей, у которых в чистом виде пробой носит характер ударной, ионизации, как у газов, но вследствие значительно меньшей длины свободного.пробега ионов для развития процесса ударной ионизации требуется более высокое напряжение.  [c.32]

Теорию электрического пробоя можно применить к жидкостям, максимально очищенным от примеси. При высоких значениях напряженности электрического поля может происходить вырывануе электронов из металлических электродов и, как и в газах, разру.ие-пие молекул самой жидкости за счет ударов заряженными частицами. При этом повышенная электрическая прочность жидкого диэлектрика по сравнению с газообразным обусловлена значительно меньшей длиной свободного пробега электронов. Пробой жидкостей, содержащих газовые включения, объясняют местным перегревом жидкости (за счет энергии, выделяющейся в относительно легко ионизирующихся пузырьках газа), который приводит к образованию газового канала менаду электродами. Вода в виде отдельных мелких капелек, находящихся в трансформаторном масле, при нормальной темпера-Tj-pe значительно снижает (рис. 4-6). Под влиянием электрического поля сферические капельки воды —сильно дипольной жидкости — поляризуются, приобретают форму эллипсоидов и, притягиваясь между собой разноименными концами, создают между э/ектродами цепочки с повышенной проводимостью, по которым и происходит электрический пробой.  [c.65]

Если толщина пленки d порядка длины свободного пробега электрона в диэлектрике или меньше ее (d < X), то использовать понятие подвижности носителей заряда для расчета сопротивления такой пленки нельзя. В этом случае электроны металла, преодолевшие потенциальный барьер Фо и влетевшие в диэлектрическую пленку, будут попадать на второй контакт практически без столкновений (рис. 10.3, б). Такой механизм прохождения свободных зарядов через тонкую диэлектрическую пленку называют надбарьерной инжещией, или надбарьерной эмиссией. Воспользовавшись аналогией с термоэлектронной эмиссией в вакуум, можно определить плотности встречных электронных токов с металлических контактов по формуле Ричардсона — Дешмена  [c.274]

Электронная а к у с т и ч. нелинейность. Рассмотренные выше эффекты относились к распространению достаточно слабого УЗ. С повышением интенсивности звуковой волны всё большую роль начинают играть нелинейные эффекты, искажающие её форму, ограничиваю1цие рост её интенсивности при усилении или уменьшающие её затухание. В проводящих средах, помимо обычного решёточного энгармонизма, существует специфич. механизм нелинейности, связанный с захватом электронов проводимости в минимумы потенциа.тьной энергни электрич. ноля, сопровождающего акусгнч. волну (т. н. электронная акустич. нелинейность). В полупроводниках такой механизм нелинейности становится существенным ири иптепсивностях УЗ, значительно меньших тек, при к-рых сказывается ангармонизм решётки, характерный для диэлектриков. Захват электронов электрич. полом волны приводит к разд. эффектам в зависимости от соотношения между длиной звуковой волны и длиной свободного пробега злектрона.  [c.58]

Заключение. Концепция Ф. (как и др. квазичастиц) помогает описать мн. свойства твёрдых тел, используя представления кинетич. теории газов. Так, решеточная тепло-проводностъ кристаллов для неметаллов — это теплопроводность газа Ф., длина свободного пробега к-рых ограничена фонон-фононным взаимодействием, а также дефектами кристаллич. решётки при низких темп-рах (границами образца). Поглощение звука в кристаллич. диэлектриках—результат взаимодействия звуковой волны с тепловыми Ф. В аморфных (в т. ч. стеклообразных) телах Ф. удаётся ввести только для длинноволновых акустич. колебаний, мало чувствительных к взаимному расположению атомов и допускающих континуальное описание твёрдого тела (см. Упругости теория).  [c.339]

Эксперименты по комптоновскому рассеянию имеют давнюю историю, иосходящую к дв/адцатым годам нашего века. Однако полное теоретическое понимание этого явления достигнуто примерно Десять лет назад, что связано с существенным прогрессом в области экспериментальной техники, т. е. разработкой новых источников излучения, датчиков, измерительных схем, позволяющих осуществлять компьютерную обработку результатов. Представляет весьма важный практический интерес то обстоятельство, что, поскольку в отличие от эффекта де Гааза — ван Алфена, комптоновское рассеяние не кмеет принципиальных ограничений относительно средней длины свободного пробега электронов, его можно эффективно использовать не только применительно к металлическим твердым телам, но и в случае аморфных диэлектриков или жидкостей [21]. Эксперименты по комптоновскому рассеянию в аморфных твердых телах проведены на сплавах Fe — В [22, 23], Со — Р.[23, 24], Ni — В [25], Ni — Р [23, 24]. В этих экспериментах в качестве источника Y-излучения с энергией 59,54 кэВ использовался радиоактивный изотоп 2 "Ат. Энергия, рассеиваемая образцом, непосредственно реги-  [c.190]

Для физического объяснения температурной зависимости теплопроводности используется понятие средней длины свободного пробега волн L, которая, согласно теории Дебая [6, 71], определяет температурную зависимость к кристаллического диэлектрика. Аналогичное понятие используется в некоторых квазикристалл ческих теориях теплопроводности жидкости, где величина L принимается равной среднему меж-молекулярному расстоянию. Однако наличие в жидкостях области ближней упорядоченности позволяет предположить, что средняя длина свободного пробега волн ограничена именно размерами области ближней упорядоченности или радиусом корреляции. С повышением температуры данная величина, как это следует из вида радиальной функции распределения, полученной экспериментально, быстро уменьшается, что влечет за собой возрастание теплового сопротивления жидкости. Таким образом, именно температурные изменения средней структуры ближнего окружения частиц в жидкости являются основным фактором, определяющим вид функции  [c.86]


Это связано с тем, что в пределах отдельных гомологических рядов с поврлшением температуры увеличивается длина свободного пробега электрона, чем и обусловливается снижение электрической прочности жидкости. Указанная закономерность не распространяется на жидкие диэлектрики, содержащие примеси, например влагу. В последнем случае с повышением температуры (от 20 до 60 °С) происходит некоторое увеличение пробивной напряженности за счет повышения растворимости влаги.  [c.50]

Клауаиус ( lausius) Рудольф Юлиус Эмануэль (1822-1888) — немецкий физик, один из основателей термодинамики и молекулярно-кинетической теории теплоты. Дал (одновременно с У. Томсоном) в 1850 г. первую формулировку второго начала термодинамики. Придерживался гипотезы У. Томсона о тепловой смерти Вселенной. Ввел первым понятие энтропии (1865 г.) идеального газа, длины свободного пробега молекул. Обосновал в 1850 г. уравнение Клапейрона — Клаузиуса. Доказал (1870 г.) теорему вириала, связывающую кинетическую анергию системы частиц с действующими силами. Разработал теорию поляризации диэлектриков (формула Клаузиуса — Моссоти).  [c.264]

Наиболее полно пробой изучен в газообразных диэлектриках (см. Электрические разряды в газах). Электропроводность газов при нор мальном давлении обусловлена движением ионов и электронов, созданных внешней радиацией. Стационарная концентрация, при к-рой скорость генерации зарядов равна скорости рекомбинации, очень мала — 10 см , что соответствует электропроводности 10-16—10 10 о.л 1сж 1. Однако в достаточно сильных электрич. полях ионы и электроны на длине свободного пробега приобретают кинетич. энергию, достаточную для ионизации молекул газа при этом образуются новые электроны, к-рыо в свою очередь производят ионизацию. В газе нарастает лавина электронов. При нормальном и повышенном давлении и больших межэлектродных расстояниях, большую роль играют процессы фотоиоппзацни и эффекты, связанные с образованием сильных положительных объемных зарядов. В промежутке между электродами образуется самораспрострапяющийся поток проводящей плазмы— т. п. стример — и сопротивление промежутка падает до нуля. Теорию этих процессов см. [1, гл. V, 14].  [c.205]


Смотреть страницы где упоминается термин Длина свободного пробега в диэлектриках : [c.256]    [c.355]    [c.468]    [c.80]    [c.53]    [c.119]    [c.235]    [c.526]   
Физическая кинетика (1979) -- [ c.350 , c.362 ]



ПОИСК



Диэлектрик

Длина пробега

Длина свободного пробега

Пробег

Свободная длина

Свободный пробег



© 2025 Mash-xxl.info Реклама на сайте