Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки конические По I еря — Особенности

Можно определить напряжения в конической оболочке и краевые напряжения в зоне сопряжения цилиндрической и конической оболочек под действием усилий и X . Определение их обычными методами строительной механики (методом сил или перемещений) не представляет затруднений. Определение единичных перемещений для ортотропной цилиндрической оболочки рассмотрено в п. 1 гл. II. Из общих уравнений теории ортотропных оболочек можно получить единичные перемещения и для ортотропной конической оболочки. Основную особенность представляет расчет фланцевого соединения, поскольку нагрузка на болты и прокладку, определяющая прочность и плотность фланцевого соединения, зависит от массовой нагрузки и жесткости элементов фланцевого соединения.  [c.110]


При рассмотрении оболочек вращения с криволинейной образующей хорошие результаты получаются для конических элементов и при аппроксимации поля перемещений вида (9.48), Составление общей матрицы жесткости при этом имеет некоторые особенности. Необходимо для каждого элемента перейти от локальной к общей координатной системе, прежде чем проводить стыковку элементов. В остальном последовательность определения узловых перемещений и усилий остается той же.  [c.267]

Деформированное состояние сложной оболочечной конструкции характеризуется не только жесткостью основных ее элементов, но и такими особенностями, как наличие упругого заполнителя и внутреннего давления видом действующих нагрузок местом их приложения и взаимным влиянием жесткостью подкрепляющих шпангоутов и упругостью диафрагм (сферических или конических оболочек, связанных со шпангоутами). Введение понятий эквивалентная жесткость и эквивалентная нагрузка значительно упрощает схему расчета сложной оболочечной конструкции.  [c.129]

Минимальная толщина стенок и оболочек определяется расчетом на прочность или ограничивается требованиями технологии литья. В ряде случаев, помимо необходимой прочности при минимальном весе, что особенно важно для корпусных деталей значительных размеров, необходимо обеспечить определенную жесткость цилиндрических оболочек, плоских или конических стенок. Для увеличения жесткости литых ответственных деталей применяют оребрение поверхностей.  [c.10]

Оболочки вращения в виде цилиндрических и конических оболочек, замкнутых днищами различной геометрической формы, сферических и тороидальных резервуаров находят исключительно широкое применение в технике. Эти оболочки особенно в химических аппаратах работают под действием внутреннего равномерного давления. Расчет таких конструкций ведется по безмоментной теории, за исключением небольших зон краевых эффектов, где для расчета необходимо использовать более точные уравнения, которые будут получены позже. В таких зонах необходимо использовать специальные конструктивные меры для смягчения концентрации напряжений и более равномерного распределения напряжения.  [c.112]

Обращается внимание проектировщиков на особенности пространственных конструкций, которые необходимо учитывать при их конструировании и расчете. Рассмотрены осесимметричные несущие оболочки, а именно цилиндрические, сферические и конические.  [c.11]


Если нет технологических ограничений, то зубчатые колеса предпочтительнее изготовлять как единое целое с полотном, ступицей и валом, так как составное колесо нуждается в элементах центровки и соединения составляющих его частей. Все это утяжеляет и усложняет конструкцию колес. При небольших размерах зубчатого колеса оно имеет плоское полотно постоянной толщины. В колесах большого размера полотно обычно представляет собой коническую оболочку переменной толщины с утонением к ободу. Это требуется для увеличения осевой жесткости колеса (в особенности косозубого) и увеличения частоты собственных колебаний для предотвращения опасных низкочастотных резонансов при колебаниях колес. Иногда такие колеса делают с полотном коробчатого сечения, т. е. из двух конических оболочек (см. рис. 11.16, а). Сопряжение обода с полотном делают с плавным переходом радиусом, соизмеримым с шириной обода колеса. Широкий обод колеса обычно выполняется с утолщениями по торцам, служащими для уменьшения поводки зубчатого венца при химико-термической обработке и уменьшения деформации зуба при нагружении (см. рис. 11.16, б).  [c.511]

В монографии представлено решение большого числа задач устойчивости, колебаний цилиндрических, конических, сферических и тороидальных оболочек на основе указанной выше редуцированной системы уравнений. Особое внимание уделено теории расчета прямого стержня, так как для этого случая теория особенно проста и выразительна.  [c.4]

Срединная поверхность оболочки не должна обладать некоторыми особенностями (например, цилиндрическая оболочка не должна быть слишком длинной коническая оболочка не должна содержать вершины конуса срединная поверхность оболочки не должна касаться плоскости по замкнутой кривой оболочка не должна быть слишком пологой и пр.).  [c.234]

По особенностям реакции на кинематические воздействия КУ можно разделить на три группы. Первая группа — жесткие КУ с большой величиной контактной жесткости (например, плоские КУ). Вторая группа — упругие КУ с малым значением контактной жесткости (например, резинометаллические КУ). Третья группа—КУ с сухим трением (например, конические клапанные пары с гибким элементом в виде оболочки).  [c.141]

Обратим внимание еще на одну особенность конической оболочки замкнутая в вершине коническая оболочка не способна при безмоментном состоянии воспринимать самоуравновешенную нагрузку, приложенную к свободному краю.  [c.311]

Конструктивные особенности оболочечных зпементов конструкций, работающих при высоких термоциклических нагрузках. Корпус газотурбинной установки представляет собой последовательное соединение корпусных оболочечных элементов компрессора 1, камеры сгорания 2, турбины 3 и выхлопного устройства, состоящего из диффузора 4 и соплового устройства 7, соединенных с помощью телескопического кольца 6, а также воспламенителя 5 (рис. 4,1). Перечисленные оболочечные элементы имеют сложную конструктивную форму и представляют сочетание плоских круглых пластин (фланец), цилиндрических и конических оболочек (корпус), сопряженных переходными поверхностями (рис. 4.2).  [c.171]

В настоящей монографии приведены результаты численного и экспериментального исследования термоползучести гибких пологих замкнутых, открытых и подкрепленных в вершине оболочек вращения переменной толщины, выполненных из изотропных и анизотропных материалов, обладающих неограниченной ползучестью. В главе I дан краткий анализ подходов к решению задач изгиба и устойчивости тонких оболочек в условиях ползучести. Глава II посвящена построению вариационных уравнений технической теории термоползучести и устойчивости гибких оболочек и соответствующих вариационной задаче систем дифференциальных уравнений, главных и естественных краевых условий, разработке методики решения поставленной задачи. Вариационные уравнения упрощены для случая замкнутых, открытых и подкрепленных в вершине осесимметрично нагруженных пологих оболочек вращения, показаны некоторые особенности алгоритма численного решения. Результаты решений осесимметричных задач неустаповившейся ползучести и устойчивости замкнутых, открытых и подкрепленных в вершине сферических и конических оболочек постоянной и переменной толщины приведены в главе III. Рассмотрено также влияние на напряженно-деформированное состояние и устойчивость оболочек при ползучести высоты над плоскостью, условий закрепления краев (при постоянном уровне нагрузки), уровня и вида нагрузки, дополнительного малого нагрева, подкрепления внутреннего контура кольцевым элементом. Глава IV посвящена численному исследованию возможности неосесимметричной потери устойчивости замкнутых в вершине изотропных и анизотропных сферических оболочек в условиях ползучести. Проведено сопоставление теоретических и экспериментальных дан-лых.  [c.4]


Для рассматриваемых задач условия закрепления краев играют более существенную роль, чем при сжатии. Влияние граничных условий на величину критического давлеиня исследовалось в [3, 261, а наиболее содержательные и полные результаты представлены в [12, 291. К сожалению, остается не освещенным учет упругости опорного контура оболочки. Теоретические зависимости в этой части отсутствуют. Особенно актуальна эта задача для конических днищ, где действуют значительные распорные усилия.  [c.76]

Вышеуказанные упрощения, делаемые при определении напряжений в оболочках, основаны на особенностях формы оболочек. Кроме них при известных условиях могут быть сделаны и другие существенкые упрощения. Если в силу заданных граничных условий не происходит изгиба оболочки, так что в меридиональных сечениях и в сечениях коническими поверхностями получатся лишь нормальные напряжения, равномерно распределенные по толщине, и нет напряжений от изгиба, то в этом случае так называемого чистого растяжения или сжатия энергия деформации сравнительно незначительна. По теореме о миниму , е энергии деформации мы всегда будем иметь одно растяжение, если оно совместимо с условиями равновесия и с граничными условиями. В противном случае на основании той же теоремы можно заключить, что напряжения от изгиба оболочки, получающегося в силу граничных условий, например вследствие защемления краев, должны по мере удаления от краев очень быстро уменьшаться, так что на некотором расстоянии от краев снова получится одно растяжение. Отсюда мы видим, какое значение имеет случай действия в оболочке одних нормальных напряжений, распределенных равномерно по толщине (напряжения типа получающихся в мембранах — Membranspannungen ). Особенно важное зничгние этот случай имеет для тонких оболочек, сопротивление которых изгибу незначительно. Мы сперва займемся случаем действия одних нормальных напряжений, равномерно распределенных по толщине, и лишь затем обратимся к теории изгиба оболочек.  [c.14]

Сгаи ротациовиого выдавливания - См. также Стан холодной поперечной прокатки конических, сферических и цилиндрических оболочек из листа Стан Сендзимира - Особенности и недостатки 302 -Схема 303  [c.909]

Особенности расчета оболочек вращения с различной формой меридиана (конических, сфершеских, торообразных и др.) очень хорошо освещены в литературе [8, 111].  [c.230]

Для многослойных конструкций, состоящих из слоев различной жесткости, учитываются их специфические особенности деформации поперечного сдвига и надавливания волокон в маложестких слоях (заполнителях). При этом слоистая оболочка заменяется эквивалентной однослойной конструкцией с некоторыми приведенными жесткостными характеристиками. На основе общих зависимостей рассмотрен ряд коикретиых задач устойчивости слоистых цилиндрических, сферических н конических оболочек, цилиндрических панелей, пластин. Для двухслойных и трехслойных конструкций приведены графики, которые могут быть непосредственно использованы в практических расчетах.  [c.2]

Механические нагрузки и прочность оболочек. Вакуумные камеры при обычном давлении не испытывают иных механических нагрузок, кроме давления окружающего воздуха. Поэтому они рассчитываются на равномерно распределенную внешнюю нагрузку в 1 кг на 1 см поверхности их стёнок. Такое незначительное давление на стенки позволяет изготовлять эту категорию камер сравнительно тонкостенными, но с обязательным соблюдением правильных, устойчивых форм, особенно при более или менее крупных размерах сосудов с выпуклыми сферическими, коробчатыми или коническими крышками и с довольно толстыми днищами и соединительными фланцами. Прямоугольные формы и плоские стенки, крышки и днища в вакуумной камере нежелательны и должны применяться только в случаях действительной необходимости. Технологичными являются во всех видах вакуумной аппаратуры цилиндрические формы с использованием для обечаек стандартных цельнотянутых или цельнокатаных труб, а при больших диаметрах сварных цилиндров — вальцованных труб из листа. Для небольших аппаратов, работающих без повышенного давления, толщина стенок обычно задается не расчетом на прочность, а технологическими соображениями. Стенки должны иметь толщину, позволяющую производить надежную и дешевую сварку, пайку и механические крепления. В табл. 6 приведены рекомендуемые толщины стенок (мм) сварочных камер из стали, без повышенного давления.  [c.69]


Смотреть страницы где упоминается термин Оболочки конические По I еря — Особенности : [c.330]    [c.56]    [c.52]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.129 ]



ПОИСК



Коническая оболочка

Оболочки конические Потеря — Особенности



© 2025 Mash-xxl.info Реклама на сайте