Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Релаксация объема

Найти дифференциальную форму динамического уравнения состояния однородной системы и, пользуясь им, определить выражения для релаксации объема, температуры и давления.  [c.279]

Сталь в метастабильном состоянии (сохраняющемся после низкотемпературного отпуска) с течением времени испытывает превращения (старение), изменяющие объем и размеры инструмента. Эти изменения протекают вследствие мартенситного превращения остаточного аустенита, уменьшения степени тетрагональности решетки мартенсита, перераспределения и уменьшения (в объеме инструмента) остаточных напряжений (релаксации).  [c.243]


Пусть в теле возникает сквозная трещина (надрез) длиной /, при этом в части объема тела происходит снижение упругой деформации и, соответственно, уменьшение плотности упругой энергии Жу р. Можно приближенно считать, что подобная релаксация напряжений происходит в области с размером порядка /, (см. рис. 6.20), т.е. уменьшение запасенной в теле упругой энергии пропорционально квадрату размера трещины  [c.312]

Если некоторые параметры системы изменяются со временем, то мы говорим, что в такой системе происходит процесс. Например, при изменении объема происходит процесс расширения системы при изменении характеристик внешнего поля — процесс намагничивания или поляризации системы и т. д. Если система выведена из состояния равновесия и предоставлена самой себе, то, согласно первому исходному положению термодинамики, через некоторое время она снова придет в равновесное состояние. Этот процесс перехода системы из неравновесного состояния в равновесное называется релаксацией, а промежуток времени, в течение которого система возвращается в состояние равновесия, называется временем релаксации  [c.23]

Вопросы физики пластичности и прочности составляют один из фундаментальных разделов физического металловедения и физики твердого тела. Закономерности пластической деформации — одного из самых распространенных технологических способов производства изделий— представляют значительный практический интерес. Пластическая деформация как технологический способ обработки металлов используется для изменения формы изделий, а также структуры и соответственно свойств металла. Эти задачи часто решаются одновременно. Пластическая деформация в реальных условиях часто проявляется как непреднамеренный процесс, приводящий к релаксации напряжений, вызванных градиентом температур или сил трения, разностью коэффициентов термического расширения и удельных объемов фаз и др.  [c.3]

Для пластичности важны характер этих барьеров и их распределение. При определенных условиях ( жестких барьерах) они могут привести к очень большой локализации скопления дислокаций и соответственно к возникновению больших локальных напряжений, которые могут превысить предел прочности материала в этом локальном объеме. В результате произойдет релаксация этих локальных напряжений путем образования и развития трещины и в конечном счете разрушение материала.  [c.531]


Для того чтобы процесс выравнивания энергий успел произойти и тело, выведенное из состояния равновесия, снова вернулось к нему, необходимо некоторое время, являющееся характерным для данного процесса и называемое временем релаксации. Если поршень движется настолько медленно, что время, в течение которого он перемещается на заметную величину, велико по сравнению со временем, необходимым для выравнивания энергий молекул, т. е. со временем релаксации, то нарушения однородности внутри газа будут исчезающе малы и газ, несмотря на перемещение поршня и изменение объема, будет практически находиться в состоянии равновесия.  [c.19]

Как уже отмечалось, система, выведенная из состояния равновесия и предоставленная при постоянных параметрах окружающей среды самой себе, через некоторое время вернется в равновесное состояние, соответствующее этим параметрам. Такое самопроизвольное (без внешнего воздействия) возвращение системы в состояние равновесия называется релаксацией, а промежуток времени, в течение которого система возвращается в состояние равновесия, называется временем релаксации. Для разных процессов оно различно если для установления равновесного давления в газе требуется всего 10 с, ТО ДЛЯ выравнивания температуры в объеме того же газа нужны десятки минут, а в объеме нагреваемого твердого тела — иногда несколько часов.  [c.10]

Ядра релаксации в соотношениях (5.9), описывающие изменения формы, и объема, приняты совпадающими.  [c.298]

Очевидно, избыточная энергия и увеличение объема наноструктурных материалов могут быть связаны с другими дефектами, не производящими дальнодействующих напряжений. Это прежде всего неравновесные вакансии, поры, микротрещины и свободные объемы, связанные с границами зерен. Например, концентрация неравновесных вакансий порядка 3 х 10 наблюдалась в Си на стадии V деформационного упрочнения [217]. Тем не менее скорость релаксации неравновесных вакансий очень высока и наиболее вероятно, что вклад вакансий во время дилатометрических исследований не удается зафиксировать [143]. К сожалению, в литературе отсутствуют данные о влиянии пор и микротрещин, однако можно предположить, что их роль незначительна в материалах, деформированных под высоким давлением. Следовательно, есть все основания полагать, что избыточная энергия границ зерен и изменение объема в наноструктурных материалах, полученных методами ИПД, в основном обусловлена наличием высоких внутренних напряжений неупорядоченных ансамблей дислокаций и дисклинаций.  [c.112]

На рис. 29 приведены кинетические кривые растворения в уксуснокислом электролите для порошка, молотого в течение 0,5 ч, и порошка, затем отожженного. Полученные кривые по характеру соответствуют кривой, приведенной на рис. 3, причем квазистационарное состояние достигалось примерно через 6—7 мин, что в принципе может быть обусловлено как полным растворением деформированных поверхностных объемов высокодисперсного тела, так и релаксацией остаточных микронапряжений вследствие хемомеханического эффекта (см. п. 7). Действительно, релаксация остаточных микронапряжений на монокристалле кальцита вследствие хемомеханического эффекта, как это наблюдалось нами, происходит в течение 1—3 мин (концентрация уксусной кислоты была более высокой).  [c.94]

Если дом хорошо построен, у него будет большая постоянная времени тепловой релаксации т. Эта постоянная характеризует врем , за которое разница температур между внешней и внутренней сторонами стены дома уменьшается на 1/е своего первоначального значения. Значение ее существенно изменяется в зависимости от конструкционных характеристик зданий. Поскольку воздух нагревается быстро, регулирование таких отопительных систем с принудительной подачей нагретого воздуха относительно просто, т. е. их можно легко отключать в ночное время и в выходные дни и также просто включать незадолго до появления людей в помещениях. Тепловая мощность типовой отопительной установки, работающей по этому принципу, составляет примерно 17 кВт. Этой мощности достаточно, чтобы обеспечить повышение в течение минуты температуры в доме объемом 430 м примерно на 1,9 °С. Поэтому если отопительная установка будет включена примерно за час до того, как семья начнет жить по дневному распорядку, температу. ра в доме после ночного снижения довольно быстро достигнет своего привычного уровня (рис. 11.4). В 6 ч 30 мин отопительная установка включается на 1,5 ч, затем выключается и снова включается в 15 ч 30 мин и работает примерно до полуночи. Суммарная потеря теплоты домом за время, пока отопительная установка отключена, составляет  [c.263]


В металле происходит релаксация напряжений, группировка дислокаций в объемах ячейки и часто появляются грубые полосы скольжения, состоящие из близко расположенных линий скольжения.  [c.10]

Как отмечалось выше, анализ дифракционных рентгеновских линий показал, что при малых дозах облучения происходит смена знака напряжений, локализованных в объеме кристаллитов. Относительная деформация кристаллитов вследствие релаксации заклинивающих кристаллиты напряжений может быть записана следующим образом  [c.199]

Рассмотрение вопроса о направленном движении трещин необходимо основывать на вариационном принципе, но прежде всего необходимо выявить механизм энергоснабжения трещин, так как в нашем случае скорость роста трещин меньше скорости распространения возмущения. Вероятно, источниками энергоснабжения, обеспечивающими рост магистральных трещин при импульсной нагрузке, являются энергия деформации, накопленная в объеме при движении в нем волн сжатия, а также различного типа отраженные волны и волны релаксации напряжений, связанных с наличием неоднородности в образце. Концентрация напряжений вблизи неоднородностей, а затем и образование системы микротрещин являются основными источниками волн релаксации, т.е. наибольший приток энергии для своего развития трещина получает от близлежащих областей локальных возмущений.  [c.139]

Экспериментально величины энергии активации и активационного объема определяют из данных зависимостей т от температуры, скорости деформации, параметров кривых релаксации и ползучести,  [c.80]

При переходе от зоны к частице вследствие образования межфазной поверхности раздела частица — матрица появляется возможность релаксации локального фазового наклепа вследствие генерации дислокаций или возникновения вакансионных потоков в матрице, приводящих к компенсации разницы удельных атомных объемов.  [c.44]

Произведение чисел Струхаля и Пекле позволяет получить безразмерное время релаксации температурного поля в объеме фазы, характеризующее инертность выравнивания поля температур  [c.9]

В (1.28) — (1.30) Т(у — характерное время процесса релаксации vz — теплоемкость дискретной фазы при постоянном объеме hi — теплопроводность жидкой фазы L —теплота фазовых переходов. В приведенные выше формулы входит геометрический параметр дискретной фазы I2. В предположении, что капли имеют сферическую форму, следует принять где — диаметр капли. Безразмерный диаметр определяется при этом по формуле [9]  [c.10]

Используя положения линейной термодинамики, провести анализ явления релаксации объема и давления гидростатически деформированной изотропной среды. Влиянием вязких эффектов и переноса тепла пренебречь.  [c.104]

Следовательно, все процессы, имеющие неразумно большие времена релаксации, являются кинетически заторможенными и могут не приниматься во внимание при термодинамическом анализе более быстрых процессов. Ограничения, на основании, которых из рассмотрения исключаются некоторые из возможных в принципе, но не происходящих практически процессов, должны, конечно, формулироваться заранее при описании термодинамической модели явления. Например, условие постоянства объема системы исключает возможность ее расширения, условие неподвижности компонентов исключает возможность диффузионных процессов и т. д. Одновременно становятся необязательными и равновесия, соответствующие этим запрещенным процессам.  [c.35]

Согласно М. Л. Бернштейну предотвратить релаксацию пиковых напряжений трещинообразованием и разрушением можно, если создать такие барьеры и такое их распределение, чтобы они были полунепроницаемы-ми . Смысл этого заключается в том, чтобы барьеры давали возможность релаксации локальных пиковых напряжений путем прорыва скопившихся дислокаций в соседние объемы материала еще до того, как величина этих напряжений достигнет значений предела прочности.  [c.531]

ЧТО напряженное состояние твердого тела не остается постоянным, а с течением времени изменяется. В нем в большем или меньшем объеме, с больн1ей или меньшей скоростью протекает процесс перераспределения напряжений. Отдельные факты гфоявления релаксации известны давно, например применение длительного, многомесячного, вылеживания чугунных литых изделий в целях снижения внутренних напряжений и исключения коробления изделий в условиях эксплуатации. Известно также, что с течением времени степень наклепа пластически деформированного металла постепенно уменьшается, этот процесс протекает при невысоких температурах и очень медленно.  [c.44]

Процесс пластического течения в кристалле осуществляется эстафетным механизмом в результате возникновения механического поля вихревой природы. Механическое поле в кристалле распространяется в виде волн смещений и поворотов. Поэтому в кристалле в любые, произвольно выбранные моменты времени могут существовать места разрядки, где полностью прошла релаксация напряжений от внешнего источника, и места с наиболее ярко протекающими процессами пластической деформации. Там, где сдвиг заторможен, и там, где активно реализуется деформация, возникает эффект взаимодействия зон с разным градиентом накопленных дефектов. Это приводит к возникновению мод вращения объемов материала и фрагментированию кристалла на малые объемы. Границы возникающих областей служат зонами заторможенного сдвига, где возникает наибольшая плотность дефектов. В этих областях происходит самоорганизованный процесс аккомодации энергии из условия сохранения сплошности. Эстафетное распространение деформации характеризуется тем, что любой сдвиг сопровождается эффектом поворота.  [c.143]

Существование разориептировок объемов пластически деформируемого материала было многократно продемонстрировано путем изучения направлений перемещения и разворотов векторов, имевших первоначально фиксируемую ориентировку [66, 67]. Благодаря этому удалось разделить мезоскопический уровень протекания пластической деформации с разворотами объемов материала на мезо-1 и мезо-П с учетом интенсивности релаксации накопленных дефектов [25, 68]. Предложенная классификация процессов пластической деформации с разделением масштабных уровней и подуровней представлена в табл. 3.1. В нее введе-  [c.146]


Выявленная последовательность сигналов АЭ отражает известную последовательность процессов деформации и разрушения материала, которые реализуются в вершине распространяющейся усталостной трещины [91, 143, 144]. Они связаны с формированием скосов от пластической деформации у поверхности образца и созданием мезотун-нелей вдоль фронта трещины с последующим разрушением перемычек между ними (см. рис. 3.19). Развитие скосов от пластической деформации происходит преимущественно путем сдвиговой деформации, и раскрытие части фронта трещины в области у поверхности образца определяется модами III + I. Это наиболее простой способ поглощения и релаксации энергии деформации и разрушения. Этот процесс наиболее активен в момент раскрытия и закрытия берегов трещины, поэтому на этих этапах восходящей и нисходящей ветвей нагрузки сигналы от ротаций объемом материала незаметны. Разрушение перемычек между мезотуннелями при регулярном одноосном нагружении также связано р модами III+I, что, в свою рчередь, соответствует локализованным процессам деформации ц разрушения, р которых ротационные эффекты едва заметны.  [c.173]

В работе [150] была сделана попытка рассчитать кривые релаксации избыточного объема в УМЗ Ni. Данные расчеты основывались на аналитических выражениях, описывающих релаксацию трех компонент дислокационной структуры границ зерен, отжиг неравновесных вакансий и рост зерен. В качестве указанных компонент дислокационной структуры границ зерен рассматривались неупорядоченные сетки внесенных зернограничных дислокаций, диполи стыковых дисклинаций, а также тангенциальные внесенные зернограничные дислокации. При построении кривых релаксации в [150] использовали подход, согласно которому каждый быстропротекающий процесс возврата может ускорить кинетику более медленного процесса. Полученные теоретические кривые в рамках сделанных предположений о дефектной структуре границ зерен достаточно хорошо описали экспериментальные за кономерности изменения длины наноструктурного ИПД Ni при ег последующем отжиге при различных температурах.  [c.83]

В этой модели тело разделяется на элементарные объемы с различными критическими напряжениями, при которых начинается пластическая деформация. Предполагается, что элементы материала деформируются упруго и идеально пластически и общие деформации в отдельных элементарных объемах постоянные и равны внешней деформации е. Релаксация элементарных объемов модели характеризуется их эффективными напряжениями и активационными площадями и описывается экспоненциальной зависимостью скорости дислокаций от напряжения. В предложенной модели общий активный объем, в котором происходит движение дислокаций, растет с увеличением напряжения вдоль полупетли гистерезиса.  [c.132]

Очевидно, что измеряемые в электротермических пеевдоожиженных слоях температуры весьма сильно (может быть даже на порядок) отличаются от кратковременных локальных температур слоя. При увеличении напряжения между электродами, а следовательно, и плотности тока в слое на каждый контакт приходится большее тепловыделение и он может быть нагрет до очень высокой температуры (до 2 000 0 и выше), так как тепловыделение концентрируется в очень маленьком объеме. При прекращении взаимного касания частиц в этих условиях могут возникать интенсивные искровые разряды, переходящие местами под действием фотоионизации в микродуговые разряды в ионизированных псев-доожижающем газе и парах испаряющегося углерода. Пробой и появление микродуговых разрядов — явления, развивающиеся во много раз быстрее, чем релаксация местного перегрева в псевдоожиженном слое, где радиационный обмен ослаблен экранирующими частицами, конвективное перемешивание газа в агрегатах мелких частиц практически отсутствует, расход газа, фильтрующегося сквозь агрегаты неоднородного слоя, мал и соответствует примерно минимальному псевдоожижению, а перенос тепла молекулярной теплопроводностью и движущимися частицами также протекает не со столь огромной скоростью.  [c.174]

В однородных средах Д. з. обусловлена релаксац. процессами, идущими на молекулярном уровне локально, т. в. в каждом элементе среды, независимо от др. элементов. В микроиеоднородных средах, где ра. нмор неоднородностей I и расстояния между ними малы по сравнению с длиной звуковой волны X (напр., взвеси, эмульсии, жидкости с газовыми пузырьками, поликристаллы — в области звуковых и УЗ-частот), могут иметь место и нелокальные релаксац. процессы, заключающиеся в обмене энергией между разнородными комполен-тами среды. Отставание изменения объема, связанного-с релаксац. процессом, от изменения давления в звуковой волне приводит к зависимости скорости звука с от отношения характерного времени процесса т к периоду звуковой волны (от величины сот, где ю — частота звука). Эта зависимость и определяет релаксац. Д. з.  [c.646]

Под медленным или квазнстатическим процессом будем понимать процесс, при котором с ,<Д1//т, где v — скорость изменения объема AV — бесконечно малое приращение объема т — время релаксации. Для быстрых нестатических процессов удовлетворяется обратное неравенство.  [c.25]


Смотреть страницы где упоминается термин Релаксация объема : [c.10]    [c.11]    [c.189]    [c.101]    [c.348]    [c.434]    [c.89]    [c.128]    [c.123]    [c.212]    [c.87]    [c.52]    [c.72]    [c.73]    [c.513]    [c.147]    [c.77]    [c.99]   
Термодинамика необратимых процессов В задачах и решениях (1998) -- [ c.107 ]



ПОИСК



Объемы тел

Релаксация



© 2025 Mash-xxl.info Реклама на сайте