Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое рассеяние. См. Рассеяние

Выше Б разд. 5.5 мы видели примеры для случая четырехмерных распределений в пространстве и во времени, когда интенсивность измеряется как функция углов рассеяния и частот. Таким образом, сечение обратного пространства на плоскости v =0, соответствующее чисто упругому рассеянию [см. (5.28) ] дает проекцию функции Паттерсона в начальный момент или усредненную во времени корреляционную функцию. Проекция четырехмерного распределения рассеивающей способности в обратном пространстве в направлении v, которая дается интегралом по v в уравнении (5.29), является фурье-преобразованием сечения функции Паттерсона Р(г, 0), которая является суммой мгновенных пространственных корреляций объекта.  [c.125]


Переходы к возбужденным состояниям атомов могут индуцироваться фотонами любой энергии, достаточной для возбуждения атома. Избыток энергии затем уносится одним фотоном с измененной частотой. Эффективное сечение выражается подобно тому, как в случае упругого рассеяния (см. [19]), и здесь эффективное сечение приблизительно равно а .  [c.141]

Обобщенное транспортное приближение достаточно хорошо описывает рассеяние даже при I = О, потому что пики выделенных вперед направлений, которые появляются в кривых дифференциального сечения упругого рассеяния при энергиях выше 1 Мэе (см. верхнюю кривую на рис. 5.5), оказываются несущественными для переноса нейтронов, и в обобщенных транспортных приближениях ими чаще всего пренебрегают. Рассеяние вперед аналогично просто отсутствию рассеяния, так как нейтроны продолжают двигаться в том же самом направлении, так что этим рассеянием можно пренебречь.  [c.193]

При упругом рассеянии (см. 4.2) волновые векторы начального и конечного состояний, и должны иметь одинаковую величину, определяемую энергией, или частотой, падающего излучения.  [c.151]

Количеств, хар-кой Р. с. при классич. и при квант, описании явл. дифференциальное сечение рассеяния dG, определяемое как отношение потока излучения ё/, рассеянного в малый элемент телесного угла dQ, к величине падающего потока йст= ///о. Пол-вое сечение рассеяния а есть сумма ст по всем направлениям, т. е. по всем й (сечение имеет размерность см ). При упругом рассеянии можно считать, что ст — размер площадки, не пропускающей свет в направлении его первоначального распространения. Неполной, но наглядной хар-кой Р. с. служит индикатриса рассеяния — кривая, графически отображающая зависимость интенсивности рассеянного света от угла рассеяния.  [c.624]

Более детальную информацию о распределении ядерного вещества можно получить из анализа упругого рассеяния нуклонов с энергией ГэВ на ядрах. Очевидно, что необходимым условием этого является существование теоретической формулы, связывающей дифференциальное сечение рассеяния с плотностью распределения ядерной материи. Несмотря на большие неопределенности теоретического анализа частиц, взаимодействующих посредством ядер-ных сил, за последнее десятилетие правдоподобная формула такого рода была получена и апробирована на опыте. Общая картина распределения ядерной материи, найденная из упругого рассеяния ядрами нуклонов с энергией 1 ГэВ, приведена на рис. 2.17. Количественное изучение кривых этого рисунка приводит к заключению, что в целом распределения протонов и нейтронов в атомных ядрах являются одинаковыми. Ядерное вещество характеризуется приблизительно постоянной плотностью внутри ядра, равной 0,17 нуклон/ферми 2,7-10 г/см , и быстрым спаданием плотности на границе ядра в пределах поверхностного слоя толщиной 2,5 ферми.  [c.61]


Существуют различные толкования термина ядерные реакции . В самом широком смысле ядерной реакцией называется любой процесс, начинающийся столкновением двух, редко нескольких, микрочастиц (простых или сложных) и идущий, как правило, с участием сильных взаимодействий (см. гл. VII, 1). С этой точки зрения ядерными реакциями в числе прочих являются и такие процессы, как, например, упругое рассеяние нуклон — нуклон, рождение нового пиона при столкновении пиона с нуклоном и др. Этому довольно всеобъемлющему определению удовлетворяют и ядерные реакции в узком смысле этого слова, под которыми понимаются процессы, начинающиеся столкновением простой или сложной микрочастицы (нуклон, дейтрон, у-квант, пион,...) с ядром. Мы будем в основном придерживаться первого, более широкого понимания термина ядерные реакции , поскольку нас интересуют и ядра, и элементарные частицы.  [c.113]

Оптическая модель описывает а) дифференциальное и интегральное сечения упругого рассеяния при различных энергиях рассеивающихся нуклонов б) сечение всех неупругих процессов, т. е. сечение поглощения нуклонов ядрами. В области энергии 10— 20 МэВ, где вклад прямых процессов относительно невелик, сечение поглощения совпадает с сечением образования составного ядра (см. 6, п. 2, а также 7, п. 2).  [c.149]

Электроны не подвержены сильным взаимодействиям. Поэтому взаимодействие электронов даже очень высоких энергий (сотни МэВ и выше) с ядрами происходит обязательно через посредство электромагнитного поля. Особое значение имеет изучение упругого рассеяния электронов высоких энергий на ядрах и на отдельных нуклонах. Этот процесс поддается точному расчету и дает возможность изучать форму распределения заряда в ядрах и нуклонах (см. гл. II, 6).  [c.161]

Более интересным является процесс столкновения электрона с позитроном. Система электрон — позитрон является истинно нейтральной (см. 2, п. 5). Поэтому в ней возможно не только упругое рассеяние, но и превращение в более легкие частицы, т, е.  [c.337]

Процессы а) дают прямую информацию о распределении электрических зарядов и магнитных моментов внутри соответствующих частиц, точно так же, как упругое рассеяние электронов на ядрах дает информацию о распределении зарядов и магнитных моментов в ядрах (см. гл. И, 6).  [c.387]

В камере фотографируются треки всех частиц, прошедших через рабочий объем за время между снятием отсасывающего поля и фотографированием. Треки имеют толщину до 1 мм, так что фотографирование их не сопряжено с какими-либо трудностями. При обработке треков извлекается следующая информация о ядерных реакциях. Прежде всего по геометрии треков устанавливается количество участвовавших в реакциях заряженных частиц и направления их движения. Так, на фотографии рис. 9.17 видно, что один из пионов (Пз) испытал упругое рассеяние. Во-вторых, если весь трек умещается в камере, то по величине пробега можно установить энергию частицы (см. гл. VHI, 2). В-третьих, сосчитав количество капель на единицу длины трека, можно определить плотность ионизации, т. е. величину потерь (см. гл. VHI, 2). По потерям можно определить скорость частицы, т. е, массу при известной энергии, либо наоборот, энер-  [c.506]

ЛИБО проявляются в упругом рассеянии атомных ядер ядрами мишени см., иапр., рис. 2).  [c.661]

В отличие от поглощения, при рассеянии Р. и. фотоны изменяют направление движения и могут потерять лишь часть своей энергии. При когерентном (упругом) рассеянии Р. и. энергия фотонов не изменяется, ио после рассеяния они движутся в др. направлении (рэлеев-ское рассеяние). Некогерентное (неупругое) рассеяние с уменьшением энергии фотонов Р. и. может быть двух типов корпускулярное (см. Комптона эффект) и комбинационное. При корпускулярном рассеянии происходит обмен импульсами между электроном атома и фотоном, в результате чего энергия фотона уменьшается на величину, зависящую от угла рассеяния, а из атома вылетает электрон отдачи. При комбинац. рассеянии за счёт части энергии фотона атом испускает электрон. Потеря энергии фотона в этом процессе от угла рассеяния не зависит. Обычно вероятность комбинац. рассеяния значительно меньше вероятности корпускулярного рассеяния однако если комбинац. рассеяние происходит на одном из электронов -оболочки, а энергия фотона совпадает с энергией электронов АГ-оболочки (с точностью до ширины -уровня), то наблюдается резонансное комбинационное рассеяние Р, и,, вероятность к-рого повышается на нёск. порядков величины и значительно превосходит вероятность корпускулярного рассеяния. В области малых Av и Z преойпадает когерентное рассеяние, при больших Av и Z — некогерентное рассеяние. В результате интерференции когерентно рассеянного  [c.375]


Узкого резонанса приближение NR-при-ближенне) 336—339, 358 Упругое рассеяние. См. Рассеяние Уравнение обратных часов 380 Условие на поверхности раздела 16, 17, 105 Условие скачка 58, 64 Усредненные по потоку интегралы 228—231 Устойчивость реактора, условия 393—396  [c.484]

Другое сделанное выше предположение состоит в том, что ядро рассеяния ограничено. Ранее было показано, что при упругом рассеянии ядро рассеяния обычно включает б-функцию Дирака [см. уравнение (1.7)1 и, следовательно, не ограничено. Если принять во внимание тепловое движение ядер (см. гл. 7), такое ядро рассеяния перестает быть правильным. Когда молекулы входят в состав газа или жидкости, они имеют непрерывный спектр возможных скоростей, и ядро рассеяния не будет иметь никаких особенностей. Поэтому ядро рассеяння иногда ограничено, а иногда нет. Хотя детали спектра собственных значений зависят от наличия особенностей ядра рассеяния [281, тем не менее оказывается, что концепция критичности, основыаающаяся на знаке а , может быть признана универсальной.  [c.36]

Комптон обратил внимание на то, что первая и вторая закономерности весьма сходны с картиной упругого рассеяния частиц, где энергия рассеянной частицы отлична от первоначальной энергии и зависит от угла рассеяния (см. 19, п. 1). В связи с этим он предложил квантовую интерпретацию явления рассеяния, согласно которой рентгеновские лучи надо рассматривать как поток частиц-фотонов, упруго рассеивающихся на других частицах —электронах. Так как электроны содержатся во всех атомах и для них выполняется условие Ef > Ее (связь с атомом несущественна), то рассматриваемый процесс можяо описать в любой среде как рассеяние фотона на свободном электроне. В связи  [c.247]

В 19 было показано, что упругое рассеяние нейтрона на тяжелом ядре может происходить под любым углом 0, в то время как угол рассеяния нейтрона на протоне не превосходит 90°. В связи с этим траектории движения нейтронов в водородном замедлителе больше вытянуты вперед, чем в тяжелом. Количественно это отличие может быть охарактеризовано средним значением косинуса угла рассеяния os0, которое равно нулю для изотропного рассеяния и растет с ростом анизотропии. Опираясь на импульсную диаграмму (см. 19), нетрудно показать, что для  [c.306]

Предельным случаем оптической модели является модель черного тела, согласно которой ядро поглощает все попавшие на него частицы. Для нейтронов упругое рассеяние в модели черного тела является чисто дифракционным (см. гл. II, 6 и 3, п. 3 этой главы), а сечение поглощения с ростом энергии плавно приближается к предельному значению (см. пунктир на рис. 2.16). Реальные параметры оптического гамильтониана (4.М) свидетельствуют о том, что ядро является полупрозрачным. Полупрозрачность ядра подтверждается также осцилляциями сечений поглощения (рис. 2.16) в зависимости от энергии. Эти осцилляции в оптической модели возникают вследствие интерференции налетающей и рассеянной ядром волн. Осцилляции сечений поглощения можно также наблюдать, сохраняя энергию неизменной, но меняя размеры ядра, т. е. изучая зависимость сечения поглощения от массового числа А. Полупрозрачность ядра означает, что влетевший в ядро нуклон не сразу образует составное ядро, а в течение некоторого времени, большего R/v, где v — скорость частицы в ядре, двигается, сохраняя некоторую обособленность от остальных нуклонов ядра. Этот факт является важным для предравновесного механизма ядерных реакций (см. 8, п. 3).  [c.151]

Начиная с порога рождения пионов (Е ар 140 МэВ), восстановление ядерных сил по данным об упругом рассеянии осложняется неупругими каналами. С дальнейшим увеличением энергии роль неупругих каналов возрастает. При энергии 2—3 ГэВ полное сечение взаимодействия выходит примерно на константу, а сечение упругого рассеяния, оставаясь большим по величине, становится чисто дифракционным (см. гл. И, 6 и гл. IV, 9). В этой области энергии понятие ядерные силы теряет физический смысл нуклоны ведут себя как черные шары , поглощающие все падающие на них дебройлевские волны. Физика нуклон-нуклонных столкновений при таких энергиях рассмотрена в гл. VII, 7.  [c.170]

Область кинематически допустимых параметров определяется неравенствами Q s, x i, при этом величина X имеет смысл мин, массы мишени (в единицах массы протона), на к-рой кинематически возможна данная передача импульса. В частности, при х=1 происходит упругое рассеяние на большой угол, т. е. с большой передачей пмпульса (см. Формфакт-ор, Автомодельная асимптотика), а область представляет собой ред-  [c.498]

ДЕЙТРОН — связанное состояние протона н нейтрона, ядро одного из изотопов водорода — дейтерия. Обозначается Н или d. Является простейшей и наиб, хорошо изученной составной системой сильновзаимо-действующих частиц. Осн. характеристики масса 2,0135 а. е. м. спин I— изотопический спин 7 =0 энергия связи св = 2,24579 МэВ магн. момент рс = = 0,857400 ядеркого магнетона квадрупольный электрический мо.чент ядра <3=2,859 -10 см среднеквадратичный радиус (определяемый из упругого рассеяния электронов при небольших передачах импульса) = = 1,9В3 10- см.  [c.577]

В квантовой теории ноля большое значение имеют также Д. с. для более сложных, чем ф-ции Грина, ф-ций отклика формфакторов., ам-плитуд рассеяния и др. Особую роль играют Д, с. для амплитуды упругого рассеяния вперёд, связывающие, в силу оптической теоремы, непосредственно наблюдаемые величины действит. часть амплитуды и полное сечение рассеяния. Эксперим, проверка Д. с., выведенных непосредственно из общих принципов квантовой теории поля, показала применимость этих принципов вплоть до масштабов —10 см. Д. с. послужили исходным пунктом целого ряда методов описания сильного взаимодействия (см. Дисперсионных соотношений метод). Одиако они в значит, мере утратили свою исключит, роль в связи с успехами квантовой хромодинамики как динамич. теории сильного взаимодействия.  [c.642]


ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЁЙ - возникновение отклонённых (дифрагированных) лучей в результате интерференции упруго рассеянных электронами вещества вторичных воли, Д. р. л, обусловлена пространственно упорядоченным расположением атомов рассеивателя и большой величиной параметра пространственной дисперсии (1 — длина волны рентгеновского н.= лучения, d — характерное межатомное расстояние в веществе). Она является осн. методом исследования атомной структуры веществ (см. Рентгеновский структурный анализ. Рентгенография материалов. Рентгеновская топография. Рентгеновская спектроскопия) [1 — 6].  [c.671]

Наряду с упругим рассеянием, Д. р. р. л. может быть обусловлено неупругими процессами, сопровождающимися возбуждением электронной подсистемы кристалла, т. е. комптоновским рассеянием (см. Комптопа эффект) и рассеянием с возбуждением плазменных колебаний (см. Плазма твердотельная). С помощью расчётов или спец, экспериментов эти составляющие можно исключить, выделив Д. р. р. л. на несовершенствах кристалла. В аморфных, жидких и газообразных веществах, где отсутствует дальний порядок, рассеяние только диффузное.  [c.691]

Для детектирования нейтронов больших энергий обычно используются сцинтилАяциошше детекторы с органич. сцинтилляторами (содержащие много водорода) значит, размеров, в к-рых пробеги протонов отдачи I велики (напр., при 00 МэВ в воде 1 = 10 см). Спектры нейтронов больших энергий измеряются по отклонению протонов отдачи в магн. поле. Однако этот метод пригоден только для интенсивных потоков нейтронов, т. к. толщина радиатора должна быть мала, чтобы в нём протоны отдачи не испытывали заметного торможения достаточно малым должен быть н используемый телесный угол, в к-ром протоны вылетают из радиатора. Для 1 ГэВ регистрация нейтронов по протонам отдачи становится малоэффективной, т.к. сечение упругого рассеяния, продолжая монотонно падать, становится меньше сечения множест-ленного рождения частиц (см. Мпожественные процессы).  [c.279]

Др. проявлением волновой природы микрочастиц служит дифракц. рассеяние — упругое рассеяние быстрых частиц на малые углы б Х/Лд (при X < Лд), обусловленное отклонением де-бройлевских волн налетающих частиц в область геом. тени, возникающей за рассеивающей частицей (см. рис. 1 в ст. Дифракционное рассеяние). Т. о., дифракц, рассеяние аналогично явлению дифракции света.  [c.272]


Смотреть страницы где упоминается термин Упругое рассеяние. См. Рассеяние : [c.198]    [c.549]    [c.116]    [c.165]    [c.107]    [c.319]    [c.55]    [c.213]    [c.375]    [c.36]    [c.71]    [c.231]    [c.356]    [c.410]    [c.496]    [c.498]    [c.619]    [c.643]    [c.662]    [c.6]    [c.224]    [c.234]    [c.84]    [c.120]   
Теория ядерных реакторов (0) -- [ c.0 ]



ПОИСК



Рассеяние упругое



© 2025 Mash-xxl.info Реклама на сайте