Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Многократные источники

Многократные источники 240 Многосвязные пространства 20 Молчания точки интерференционные 120  [c.474]

Улучшение характеристик противоточной системы с помощью принципа механического торможения изучалось автором совместно с сотрудниками не только при каскадно расположенных вставках, рассмотренных выше. Представляется, что наиболее эффективным осуществлением этого принципа является применение винтовых сетчатых вставок (одно- или многозаходных). Экспериментальное изучение таких вставок проводилось методами меченых частиц, р-просвечивания и отсечек [Л. 21, 84]. В первом случае экспериментальная установка состояла из стенда торможенной газовзвеси и электронного блока для регистрации заряженных частиц. Стенд торможенной газовзвеси включал в себя прозрачную цилиндрическую камеру из органического стекла высотой 0,8 и диаметром 0,34 м, в которую вставлялись сменные винтовые сетчатые вставки. Источником излучения являлась частица алюмосиликата di = = 4,35 мм, меченная Со активностью 0,5 мг-экв. Для проверки методики вначале были проведены опыты по определению времени свободного падения одиночной меченой частицы, которое сопоставлялось с теоретически рассчитанной величиной. Время находилось по (2-45) при у = 0, Vo.a=VT,a=0. Многократное определение времени, в течение которого меченая частица проходила контрольный участок камеры, совпадало с расчетным с погрешностью 4%, что лежит в пределах точности эксперимента и служит частной проверкой  [c.95]


Важным фактором, управляя которым, можно добиться выполнения условий сходимости метода Ньютона, является близость точки начального приближения Vo к точке корня V. Это обстоятельство привело к появлению метода, повышающего вероятность сходимости метода Ньютона и называемого методом продолжения решения по параметру. В этом методе в решаемой системе уравнений выделяют параметр, влияющий на положение точки корня в пространстве фазовых переменных. Например, при анализе электронной схемы таким параметром может быть напряжение источника питания. Система (5.1) решается методом Ньютона многократно при ступенчатом изменении параметра. Пусть параметр Е выбран так, что при - 0 имеем V - 0. Тогда при первом решении выбираем Vq=0 и находим значение корня V, , соответствующее начальному значению параметра Е. Далее увеличиваем Е и решаем систему уравнений при начальном приближении Vo=Vj  [c.228]

Для упрощения расчетов источник теплоты иногда считают быстродвижущимся. При сварке кольцевого шва эта схема предусматривает распространение теплоты, выделившейся на участке dS (рис. 6.19, в), только в плоскости /—/. При многократном  [c.190]

В указанном выше примере ЭВМ используется лишь для экономии времени и облегчения труда расчетчика. Более высокая ступень использования ЭВМ — интегрирование определенных интегралов и решение систем уравнений. В частности, расчет температур в стадии теплонасыщения по формулам (6.21), (6.25), (6.29), при многократном отражении теплоты от границ тела (6.49), (6.52), в телах вращения (6.56), (6.58), (6.61), при учете распределенности источников теплоты (6.73) целесообразно при массовых расчетах выполнять на ЭВМ путем составления специальной программы. Решение уравнения (6.85) путем  [c.201]

В, способных перемещаться друг относительно друга, помещен источник света S. Многократное отражение света от движущихся зеркал позволяет увеличить скорость движения источника. Обозначим расстояние от источника S до одного из зеркал Л и S через х. Тогда расстояния от источника до его первого, второго, /-го изображения соответственно будут SS = 2х, SS" = 4лг,. .., SS -> = 2jx.  [c.424]

При расчете у-квантов от сферической активной зоны можно пользоваться также формулами типа (9.63) и (9.63а), но с учетом многократного рассеяния излучения. При этом следует помнить, что учет накопления у-квантов в активной зоне в результате их многократного рассеяния— сложная задача, корректно решить которую можно лишь с помощью анализа уравнения переноса у-квантов. Проблема учета накопления у-квантов в материале источника (в данном случае активной зоны) подробнее рассмотрена в работе [41].  [c.60]


Для источников, функция ослабления которых имеет экспоненциальный характер, в случае отсутствия таблиц или графиков толщину защиты можно оценить следующим способом. Сначала определяют число длин пробега рй о без учета многократного рассеяния  [c.103]

В тех случаях, когда нельзя пренебрегать многократно отраженным в канале излучением, его можно учесть дальнейшим интегрированием. Например, компонента двукратно отраженного излучения может быть определена, если источником излучения считать однократно отраженное излучение.  [c.149]

Такие характеристики источника, как плотность, химический состав, состояние (газообразное, жидкое, твердое), необходимы для правильного учета самопоглощения и многократного рассеяния у-квантов в источнике.  [c.191]

Первые лабораторные исследования оптического явления Допплера принадлежат А. А. Белопольскому (1900 г.) его опыты были позже повторены Б. Б. Голицыным (1907 г.) Белопольский увеличил скорость движения источника, использовав многократное  [c.438]

В другой конструкции голографического зонда (рис. 31, б) предварительно подготовленная небольшая фотопластинка или фотопленка крепится в оправе на световоде. Для уменьшения влияния отражений на границе раздела между подложкой эмульсии и торцом световода находится иммерсионная жидкость. Ввиду меньшей механической стабильности такая конструкция используется при импульсном режиме освещения когерентным источником. При перезарядке фотопластинки(или пленки) устройство может применяться многократно.  [c.81]

Мэе) ускорению подвергаются многократно ионизованные атомы (С +). Такие ионы возникают (в небольшом количестве примерно 0,1%) в результате столкновений двукратно ионизованных атомов (полученных в источнике) с остатками газа в камере циклотрона. Расчет показывает, что циклотрон, настроенный на ускорение двукратно ионизованных атомов, ускоряет также и шестикратно ионизованные атомы. В реакциях (49. 1,1) использовались ионы бС , ускоренные до 120 Мэе.  [c.420]

Идея опыта Белопольского заключается в следующем. При отражении света от движущегося зеркала изображение источника также движется и скорость источника будет определяться скоростью движения зеркала. Используя многократное отражение от движущихся зеркал, можно таким образом увеличить скорость движения источника. Пусть источник света 5о находится на рассто-  [c.219]

Интенсивность звука, создаваемого каким-либо источником, зависит не только от характеристики источника, но и от помещения, в котором он находится. В каждую точку пространства внутри помещения наряду со звуком, идущим от источника, приходит также звук, многократно отраженный от стен, который называется диффузным (рассеянным) звуком. После прекращения действия источника звука диффузный звук исчезает не сразу. Это объясняется тем, что еще в течение некоторого времени приходят отраженные от стен волны. Такое явление затягивания звука после прекращения действия его источника называется реверберацией. Время, необходимое на то, чтобы звук в помещении после прекращения действия его источника полностью исчез, называют временем реверберации. Условно считают, что время реверберации равно промежутку времени, в течение которого интенсивность звука ослабевает в миллион раз.  [c.236]

Рабочее тело. Для того чтобы непрерывно производить работу, нужно иметь по меньшей мере два тела с разными температурами, т. е. два источника теплоты. Однако наличие разности температур само по себе еще недостаточно для осуществления процесса превращения теплоты в работу так, например, если два тела с разными температурами просто привести в соприкосновение, то теплота перейдет от горячего тела к холодному без совершения какой-либо полезной внешней работы. Чтобы осуществить тепловой двигатель, непрерывно производящий работу, нужно между телами разной температуры совершать некоторый замкнутый процесс или цикл, для чего потребуется еще одно тело. Это вспомогательное тело, совершающее во время работы теплового двигателя многократно повторяющийся круговой процесс (состоящий в случае двух источников теплоты из чередующихся изотермических и адиабатических процессов) называется рабочим телом.  [c.46]


В ускорителях непосредственно ускоряются лишь стабильные заряженные частицы, входящие в состав земной коры. Поскольку основной интерес для физики представляют элементарные акты взаимодействия, то в большинстве ускорителей получают пучки протонов или электронов. Используются пучки дейтронов и а-частиц,. Имеется также небольшое количество ускорителей тяжелых ионов, таких, как многократно заряженные ионы углерода, азота, кислорода и более тяжелых ядер. Решена задача создания достаточно интенсивных источников для ускорителей позитронов и антипротонов.  [c.467]

Дислокационная линия АВ в конце каждого цикла образования петли восстанавливается, поэтому она может генерировать неограниченное количество петель. Каждая петля при своем распространении на плоскости скольжения производит единичный сдвиг. Многократной генерацией источником Франка — Рида и образованием большого количества петель объясняются перемещения  [c.66]

Пусть имеется горячий источник с температурой Г , которая не уменьшается, несмотря на отбор теплоты для многократно повторяющихся циклов. Приведем рабочее тело (газ в цилиндре с поршнем) в термический контакт с горячим источником, через некоторое время газ примет температуру 1 и можно начать первый процесс аЬ цикла обратимый подвод теплоты к рабочему телу. Сдвинем поршень на небольшое расстояние, дав газу немного расшириться и понизить свою температуру до значения Т —с1Т. Под действием малой разности температур к газу от горячего источника будет подведена теплота dql и его температура снова возрастет до Т. Возобновляя движение поршня малыми и редкими толчками, можно (в пределе) получить обратимый процесс аЪ подвода теплоты к рабочему телу при температуре  [c.49]

Источниками помех при контроле теневым методом являются также внешние шумы (наводки), интерференция многократных отражений в изделии и переходных слоях, неравномерное затухание ультразвука на различных участках изделия. Помехи этих видов рассмотрены в подразд. 3.4.  [c.117]

Несмотря на свойственные им недостатки, реакторы-размножители на быстрых нейтронах могут в перспективе иметь большое значение, поскольку их внедрение обеспечит многократное увеличение запасов урана. Это, в свою очередь, может достаточно далеко отодвинуть наступление такого времени в будущем, когда производство энергии на АЭС станет настолько дорогим, что понадобится широкое использование альтернативных источников энергии, например солнечной, применение которых в результате станет экономически оправданным.  [c.41]

Яркость элемента поверхности объекта dSo, находящегося в поле зрения пирометра, вызванная лишь многократным переотражением излучения источника в системе объект — источник  [c.136]

Найдем яркость визируемой площадки объекта dS обусловленную только многократными переотражениями объекта в системе объект — источник. Пользуясь принятыми обозначениями, запишем  [c.138]

АЭ-метод выступает как самостоятельный, если по его оценке, полученной на основании критериального анализа зарегистрированной АЭ-информации от источников-де(()ектов, состояние объекта признается удовлетворительным. В противном случае для окончательной оценки привлекаются дополнительные методы НК. Наибольшую надежность оценки дает применение АЭ-метода в комплексе с такими т )адици-онными методами, как визуально-оптический, капиллярный, магнитопорошковый, ультразвуковой, рентгеновский. Эффективность комплексного контроля в этом случае определяется тем, что в задачу АЭ-метода входит выявление АЭ-активных источников и определение их координат или зон их расположения, обеспечивающих многократную минимизацию объемов последующего контроля традиционными методами. Последние дополняют предварительную АЭ-оценку состояния объекта сведениями о геоме фических параметрах и степени опасности выявленных дефектов (размерах, форме, ориентации и глубине залегания).  [c.264]

Принцип кондиционирования заключается в следующем. Представим себе комцату, в которой стены, потолок и пол обладают способностью отражать все 100% падающего на них теплового излучения. Внутри комнаты находятся источник теплового излучения (объект нагрева)— человек, а также радиационная охлаждающая (нагревающая) поверхность, расположенная вблизи потолка, для того чтобы не производить конвективного охлаждения (нагрева) воздуха в комнате. Очевидно, что при отсутствии поглощения теплового излучения поверхностями комнаты тепло, излучаемое (поглощаемое) человеком, отражаясь многократно от стен, рано или поздно будет поглощено (при отоплении происходит обратный процесс) холодной радиационной поверхностью, так как другого пути ему нет. При этом температура воздуха в комнате может быть относительно высокой (низкой), что не будет препятствовать охлаждению (нагреванию) человека.  [c.238]

В томе I, изданном Атомиздатом в 1969 г., приведены общие сведения по физике защиты, безотносительно к определенным источникам. В их числе единицы радиоактивности, предельно допустимые уровни ионизирующих излучений, взаимодействие излучений с веществом, численные, аналитические и полуэмпи-рические методы расчета прохождения излучения в радиационной защите, характеристики поля первичного и многократно рассеянного у- и нейтронного излучений в источнике и в защитных средах, инженерно-физические методы расчета защиты.  [c.5]

Расчеты в приближении однократного рассеяния. Для небольших толщин защиты, если многократно рассеянными у-квантами или нейтронами можно пренебречь, то удовлетворительные оценочные результаты получаются в приближении однократного рассеяния. Например, очевидно, что компонента /моно для дискового мононаправлснного источника и цилнн-  [c.148]

Здесь индекс г относится к Лг-й энергии у-квантов уп(- г), Уч Ег) —массовые коэффициенты истинного поглощения энергии у-квантов в воздухе и породе ( г) — дифференциальные гамма-постоянные Ка и его короткоживущих продуктов распада (см. например, [8]). Полная гамма-постоянная радия (без начальной фильтрации) /(7=9,36 р-см /(ч-мкюри). В этих формулах, полученных по так называемому у-методу, учтено многократное рассеяние у-квантов в материале источника. Принимая эффективное значение уэфф = 0,032 см г по всему спектру и выражая удельную активность Q [мкюри/г порс Ды], можно получить простое приближенное соотношение для экспозиционной мощности дозы внутри забоя  [c.216]


В случае оптического квантового генератора зеркальный резонатор создает положительную обратную связь между полем излучения и источником его энергии — активной средой ). Зеркала резонатора обеспечивают многократное распространение (и тем самым усиление) светового потока в активной среде. Это необходимо и для самовозбуждения генерации, и для ее поддержания. Однако роль резонатора в работе лазера не исчерпывается повышением плотности энергии поля в активной среде. Согласно указанной выше аналогии, для возникновения автоколебательного режима обратная связь должна быть положительной. Другими словами, должна иметь место строгая сннфазность колебаний, уже существующих в системе и приходящих по каналу обратной связи. Подобные соображения применимы и к оптическим квантовым генераторам, о чем будет идти речь в 228, 229.  [c.783]

Растр (оло1 рафических линз, таким образом, можно рассматривать как голограмму совокупности точечных источников света, которая может быть получена с помощью линзового растра или методом последовательного получения голограмм одного и того же точечного источника, образованного высококачественным микрообъективом. В пос-ле.тнем сцгучае удается избежать многократного наложения излечения от таких источников и обеспечить высокую идеггтичность свойств отдельных голографических лиги, составляющих растр. Достижение подобной идентичности обычных линзовых микрообъективов и создание на их основе высококачественного растра является одним из основных преимуществ растра голографических линз.  [c.61]

Перейдем к рассмотрению процесса генерации. Образование инверсной заселенности еще не гарантирует высокой интенсивности светового потока, выходящего из активного вещества. Степень усиления зависит от коэффициента усиления кус и длины активного слоя I. В простом виде эту зависимость можно представить следующим образом ( = оехр(/ ус/), где о — интенсивность света, падающего на поглощающий слой вещества щ — интенсивность света, выходящего из него /гус = = —йпогл. Если бы удалось сильно увеличить длину активного стержня, то излучение, выходящее из его торцов, было бы весьма интенсивным, причем оно существовало бы даже, если бы и не было внешнего потока. Первичным источником была бы люминесценция, многократно усиленная при прохождении большой длины усиливающего слоя (это явление называют сверхлюминесценцией).  [c.277]

Интенсивность звука, создаваемого тем или иным источником, зависит не только от свойств источника, но и от свойств помещения, в котором источник находится. Если стены помещения сильно отражают падающие на них звуковые волны, то в по-ме1цепнях могут происходить такие же явления, как и в трубах, но вся картина гораздо более сложна вследствие того, что распространение падающих и отраженных волн может происходить по всем трем направлениям, а не по одному, как это происходило в трубах. При этом должна была бы возникнуть сложная система стоячих волн. Однако, так как обычно стены помещения не представляют собой правильных плоскостей (имеют выступы, карнизы и т. д.), в помещениях находятся различные предмет ,I, также отражающие звук, и, кроме того, могут происходить многократные отражения, то узлы и пучности стоячих волн, образующиеся при отдельных отражениях, оказываются сдвинутыми друг относительно друга. Изменения амплитуд от точки к точке, характерные для стоячих волн, усредняются, и фактически отчетливых стоячих волн в помеще1шях обычно не наблюдается. Отражения  [c.742]

Фотографические методы исследования успешно исгЮЛЬзу1отс51 -для изучения движения точки поверхности тела при прохождении через нее волны напряжений, а также при изучении распространения фронта волны напряжений. При изучении движения поверхности тела в одних случаях используется непрерывная запись движения, получаемая с помощью вращающегося барабана или вращающейся зеркальной камеры, в других применяется прерывная запись, получаемая с помощью источника света, дающего вспышки малой продолжительности. Изучение движения фронта волны напряжений основано на использовании многократных вспышек.  [c.27]

В заключение укажем, что в случае резонансных линий, для которых нижний уровень является нормальным, процессы, происходящие в объемном источнике, усложняются так называемым пленением" излучения. Дело в том, что для резонансных линий, благодаря очень большим значениям Хд, всякий фотон, прежде чем он выйдет за пределы источника света, будет поглощен. Однако атом, поглотивший фотон, перейдет в возбужденное состояние и вновь испустит фотон той же частоты, но летящий, вообще говоря, в другом направлении. В результате фотоны до выхода за пределы источника света испытают многократное поглощение — с последующим испусканием. Теория этого явления была разработана Л. М. Виберманом, Хольстейном и Занстра [5б-б0]  [c.418]

И. М. Любарский и Л. С. Палатник экспериментально установили, что белая фаза представляет собой сложную гетерогеннуго высокодисперсную структуру, содержащую аустенит, мартенсит и карбиды [43]. Эта структура образуется в результате импульсного приложения энергии (механического удара), которая с большой скоростью преобразуется в теплоту. Возникающие при этом в процессе трения точечные источники теплоты вызывают сложные эффекты закалки и отпуска в микроскопических объемах металла, которые приводят (при многократных механических ударах) к структурным изменениям не только в тонком поверхностном слое, но и на значительной глубине от трущейся поверхности.  [c.23]

Дефектоскопы подразделяют на стационарные, передвижные и переносные. Стационарные дефектоскопы ЛДА-3, ЛД-4, КД-20Л состоят из блоков пропитки, мойки, сушки, нанесения проявителя и осмотра деталей в УФС. Передвижные дефектоскопы КД-21Л монтируют на тележках. Переносные дефектоскопы КД-31Л, КД-32Л и КД-ЗЗЛ представляют собой переносные комплекты УФ ламп и применяются для контроля крупногабаритных изделий. В качестве источников УФС используют ртутно-кварцевые лампы высокого (ПРК) и сверхвысокого (ДРШ) давлений. Переносный аэрозольный комплект КД-40ЛЦ предназначен для контроля изделий в полевых, цеховых и лабораторных условиях цветным, люминесцентным, люминесцентно-цветным методами. В комплект входят разборные аэрозольные баллоны, которые можно многократно заряжать дефектоскопическими материалами на зарядном стенде переносной ультрафиолетовый облучатель.  [c.36]

Выделим на поверхности объекта элементарную площадку dSi, на поверхности источника—dSj, обозначив углы между линией Гц, соединяющей центры площадок, и нормалями к площадкам через aij, jj (см. рисунок). Соответствующие углы для визируемой площадки dSj, и dSj будут о и а,о- Учтем, что эффективная поверхностная плотность излучения объекта равна сумме плотностей а) первичного собственного излучения объекта б) многократно переот-раженного в системе объект—источник собственного излу-  [c.133]

Излучение окружающей среды, имеющей яркость /с, отражается от объекта, затем многократно переотражает-ся в системе объект—источник и в результате приводит к увеличению яркости визируемой площадки объекта.  [c.139]

Используя свойство замыкаемости [9, И], получаем угловой коэффициент излучения площадки dSo в окружающую среду фос=1—Фои- Пользуясь методом многократных нереотражений, аналогично можно показать, что излучение окружающей среды, имеющей яркость /с, отражаясь от объекта и в дальнейшем многократно пе-реотражаясь в системе объект — источник, вносит свой вклад в яркость объекта, равный  [c.139]


Смотреть страницы где упоминается термин Многократные источники : [c.185]    [c.197]    [c.246]    [c.177]    [c.129]    [c.743]    [c.28]    [c.59]    [c.217]    [c.133]    [c.138]   
Теория звука Т.2 (1955) -- [ c.240 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте