Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка плавлением схема процесса

Принципиальная схема и технологический процесс диффузионной точечной сварки почти не отличаются от точечной сварки плавлением. Разница лишь в том, что режим сварки подбирают таким, чтобы температура алюминиевой матрицы была близка к темпера-194  [c.194]

Схема процесса электрошлаковой сварки представлена на рис. 149. Шлаковая ванна 4 образуется расплавлением флюса, заполняющего пространство между кромками основного металла 1 и охлаждаемыми водой (трубки 8) ползунами 2, плотно прижатыми к поверхности свариваемых деталей. Процесс начинается с плавления флюса электрической дугой, возникающей между нижней соединительной планкой и электродом 5.  [c.213]


Рис. 2.2. Схема процесса сварки плавлением при нагреве кромок источником концентрированной энергии Q а — соединяемые элементы А и Б б — то же, в момент образования ванны в — то же, после кристаллизации Рис. 2.2. Схема процесса сварки плавлением при нагреве кромок источником концентрированной энергии Q а — соединяемые элементы А и Б б — то же, в момент образования ванны в — то же, после кристаллизации
Процессы тепловые при сварке дуговой 55—57 лазерной 59—60 электроннолучевой 59 электрошлаковой 57—59 Процесс сварки, схема И—14 Процессы физико-металлургические при сварке плавлением 32—103 в защитных газах 77—81 дуговой 32—44 лазерной 52—54 под флюсом 76—77 покрытыми электродами 75—76, 308—314 электроннолучевой 49—52 электрошлаковой 44—49 Пушки электроннолучевые, системы 50—51  [c.762]

Рис. 8.25. Схема процесса высокочастотной сварки плавлением по отбортованным кромкам Рис. 8.25. Схема процесса <a href="/info/29059">высокочастотной сварки</a> плавлением по отбортованным кромкам
При сварке плавлением взаимодействуют между собой газообразная, жидкая и твердая фазы, вследствие чего протекание диффузионных процессов возможно по следующим схемам  [c.210]

В ядре сварной точки допускаются единичные поры, раковины и даже трещины, если их размер не превышает V3—V4 высоты ядра. Такого рода дефекты не оказывают влияния не только на статическую, но и вибрационную прочность. Это объясняется тем, что прочность сварной точки главным образом зависит от концентрации напряжений, типовая эпюра которых показана на нижней части рис. 96. Круговой концентратор К, который проходит по зоне термического влияния (если она есть) или по границе расплавления, и представляет собой самое опасное сечение сварного соединения. Следовательно, поскольку неустраним сам концентратор К, то, видимо, все внимание технолога должно сосредоточиваться на том слое металла, в котором расположен концентратор К-Таким образом, первая задача технолога —это получить хорошо сформированное расплавленное ядро определенных размеров. Вторая, более сложная задача — обеспечить в зоне концентратора К такую структуру металла, которая в наибольшей мере оказалась бы способной выдерживать концентрации напряжений без образования надрывов и трещин. Если иметь в виду, что при точечной сварке металл в зоне сварного соединения подвергается одновременно тепловому и механическому воздействию, то вполне рационально рассматривать точечную сварку как термомеханический процесс обработки металла. Но и это еще не все, что отличает точечную сварку от классической схемы термической обработки только в координатах температура — время. Через жидкую фазу ядра и горячую зону термического влияния проходят токи огромной плотности. Во многих случаях практики эти токи униполярны. Нельзя поэтому упускать из вида возможность влияния электрического тока — вначале на химическую однородность металла, а затем в конечном итоге и на структуру не только ядра, но и границы плавления.  [c.196]


Электрическая дуга представляет собой электрический разряд между двумя электродами, обеспечивающий в зоне сварки деталей быстрый и сосредоточенный нагрев металла до температуры плавления. Электрическая дуговая сварка угольным электродом была разработана русским изобретателем Н. Н. Бенардосом (1842—1905). Схема такой сварки заключается в следующем от сварочного генератора при помощи гибкого провода графитовый электрод соединяется с одним полюсом, а деталь, подлежащая сварке, — с другим сварщик, прикасаясь концом электрода к свариваемой детали, производит короткое замыкание и затем быстро отводит электрод на необходимое расстояние, возбуждает электрическую дугу, которую и поддерживает в процессе сварки деталей.  [c.259]

При высокой температуре жидкого шлака, превышающей температуру плавления свариваемого металла, кромки основного металла и электродная проволока плавятся, образуя общую ванну жидкого металла. Схема электрошлаковой сварки представлена на рис. 200. Свариваемые детали / расположены вертикально. Между свариваемыми кромками детали и медными формующими ползунами 2 устанавливают один или несколько электродов 5 в зависимости от сечения шва и помещают флюс. Ползуны 2 охлаждают водой, подаваемой трубкой 7. Процесс сварки начинается с возбуждения электрической дуги между электродами и начальной (опорной) планкой и нижней частью детали. Расплавленный металл 3 (основной и электродный) находится на дне ванны, а над ним образуется слой расплавленного флюса 4 (шлака). Когда над расплавленным металлом образуется слой высоконагретого жидкого шлака, тогда электродуговая плавка переходит в электрошлаковый процесс. Непрерывность процесса сварки обеспечивается равномерной подачей электродов и их перемещением вверх вдоль свариваемого шва, а также перемещением ползунов по мере затвердевания металла шва 6.  [c.478]

Изменение скоростей подачи в зону плавления нескольких проволок различного состава. Подача с изменяющимися скоростями в зону плавления двух или более проволок различного состава позволяет получать металл швов и наплавок переменного или переменно-дискретного состава. Принципиальная схема такого процесса приведена на рис. 12, а. Сварку несколькими проволоками можно выполнять в двух технологических вариантах  [c.15]

Схема сварки лежачим электродом следующая. Толстопокрытый электрод кладут в разделку шва. С помощью вспомогательного угольного или металлического электрода возбуждается дуга между свариваемым металлом и концом лежачего электрода. Дуга горит под слоем электродного покрытия и перемещается по длине электрода по мере его плавления. Для ускорения процессов можно вторым электродом вести сварку обычным способом, плавя его позади дуги лежачего электрода. Длина лежачего электрода во избежание сильного перегрева должна быть не больше 1250 мм. Покрытия наносятся на электрод более толстым слоем, чем обычно, — толщиной от 1,5 до 3 мм в зависимости от диаметра электрода. При многослойной сварке в шов можно закладывать одновременно несколько электродов. При укладке в шов нескольких электродов каждый из них питается от отдельного сварочного трансформатора.  [c.240]

Приведенными схемами, разумеется, далеко не исчерпываются возможности получения сварных соединений аустенитных жаропрочных сталей и сплавов без их расплавления, т. е. диффузионным способом. Испо льзование той или иной из рассмотренных схем, так же, как и любой другой гипотетической схемы диффузионной сварки, зависит от композиции прослойки и свариваемого металла. Выбор композиции прослойки облегчается знанием растворимости элементов, т. е. знанием диаграммы состояния данной системы сплавов. При рассмотрении проблемы горячих трещин в аустенитных швах (см. гл. IV) мы привлекаем равновесные и приведенные (псевдобинарные) диаграммы состояния для понимания поведения данного элемента, его влияния на структуру и горячеломкость аустенитных швов. Вследствие неравновес-ности процессов первичной кристаллизации сварочной ванны при различных способах сварки плавлением использование равновесных диаграмм состояния, естественно, лишь в первом приближении характеризует истинную картину явлений. При диффузионной сварке расплавление переходного слоя происходит быстро, как только в процессе нагрева будет достигнута температура его плавления. Но затвердевание переходного слоя (прослойки, припоя) идет достаточно медленно, чтобы можно было с полным основанием говорить о применимости равновесных диаграмм состояния для изучения закономерностей ПСП.  [c.376]


Особенности металлургических процессов при сварке толстопокрытыми электродами. В общем виде схему процесса сварки толстопокрытым электродом можно представить следующим образом (рис. 15.11). Под действием высокой температуры дугового разряда плавятся электрод и кромки основного металла, образуя сварочную ванну. При плавлении конца электрода, как видно из схемы, нагреваеТ ся и плавится внутренний слой покрытия, которое у конца электрода принимает вид втулки. Шлак тонким слоем покрывает расплавленный металл конца электрода и капли. Несмотря на то, что капли электродного металла находятся в дуговом промежутке весьма малое время, необходимо учитывать результат и.х взаимодействия с газовой атмосферой дуги, состоящей из продуктов, выделяющихся при плавлении обмазки, — СОз, СО, Н2О, Нг. Пройдя дуговой промежуток, капли растворяются в сварочной ванне. При этом шлак всплывает на поверхность металла, вытесняется давлением дуги в стороны и, соприкасаясь с xoлoд ным металлом, застывает.  [c.358]

Важно подчеркнуть, что физико-химическая сущность процесса образования соединения при всех способах газопламенной пайки одна и та же. Она определяется взаимодействием расплавленного припоя с основным металлом, зависящим от соотношения их свойств, режимом нагрева и условиями процесса пайки. Этот обобщенный признак и положен в основу классификационной схемы способов газопламенной пайки. В нее не включена одна из разновидностей пайки — сварко-пайка, которая применяется для соединения разнородных материалов (например, латунь— сталь) с нагревом более легкоплавкого металла до температуры, превышающей температуру его автономного плавления. По своей природе этот процесс ближе к сварке плавлением.  [c.173]

Для ошлаковывания окиси кремния 5102, образующейся прн сварке чугуна, во флюс необходимо вводить основные соли. Наиболее целесообразно в данном случае использовать углекислые соли натрия, обладающие низкой температурой плавления. Флюс для сварки-пайки чугуна латунными присадками содержит следующие вещества 50—60% буры или борной кислоты, 25—20% углекислой соды, 25—20% углекислого натрия. Такой флюс обеспечивает хорошую растекаемость присадочного металла и смачивание им основного металла, а также является индикатором температуры, так как его плавление происходит около 700 °С. Процесс сварки-пайки ведется по следующей технологии подготовленные механическим путем кромки прогревают газовым пламенем до 600—650 °С, затем на нагретую поверхность наносят слой флюса. Нагрев кромок продолжают до расплавления флюса. Конец присадочного прутка, на который предварительно нанесен слой флюса, прогревают горелкой до начала плавления, и пруток погружают под слой расплавленного флюса, находящийся на детали. Конец прутка все время должен касаться нагретой поверхности детали и расплавляться только под флюсом. После заполнения разделки шва пламя горелки медленно отводят от детали, шов накрывают листовым асбестом. Схема процесса сварки чугуна латунным прутком дана на рис. 85. Механические испытания сварных образцов, выполненных этим способом, показывают, что разрыв  [c.157]

При плавлении кислых покрытий (А) большая часть введенных в них ферросплавов окисляется рудами легирование металла кремнием и марганцем идет по схеме кремнемарганцевосстановительного процесса оно не позволяет легировать металл элементами с большим сродством к кислороду. Образующиеся шлаки, обычно кислые, не содержат СаО и не очищают металл от фосфора. В наплавленном металле много растворенного кислорода и неметаллических включений. В результате швы обладают пониженной стойкостью к образованию горячих трещин и низкой ударной вязкостью металла шва. В связи с высоким содержанием в покрытии ферромарганца и оксидов железа они более токсичны, так как аэрозоли в зоне сварки и зоне дыхания сварщика содержат большое количество вредных соединений марганца. Эти электроды применяют для сварки неответственных металлоконструкций.  [c.27]

Так, при аргоно-дуговой сварке алюминиевомагниевых сплавов неплавящимся электродом Ю. А. Деминский определил температуру ванны в пределах 750— 900° С. При аргоно-дуговой сварке- плавящимся электродом температура капель им определена в зависимости от режима в пределах 1250—1550° С, т. е. приближается к температуре кипения сплава. Температура ванны при этом по расчету (при -ф 0,65) составляет — 900—1000° С. При сварке чистого алюминия, по японским данным, температура капель достигает 1700 С. Ванная при дуговой сварке по ф л ю с у, по измерениям Д. М. Рабкина [61 ], имеет температуру 1000 100° С. Таким образом, и в этих случаях при сварочных процессах температура жидкого металла, особенно капель наплавляемого металла, значительно выше температуры плавления свариваемого или присадочного металла. Это обстоятельство должно учитываться при рассмотрении общей схемы взаимодействия материалов в условиях сварки.  [c.52]

Сварные швы. Наиболее ачабые места в аппаратуре — сварные швы и прилегающие к ним зоны, в которых при сварке возникают термические напряжения. Как известно, в процессе сварки металл нагревается неравномерно. В зоне сварного шва достигается температура плавления металла, а в прилегающих зонах температура металла намного ниже. На рис. 1-1Х схематически показано изменение температуры металла при сварке и указаны температурные интервалы на упрощенной диаграмме состояния железо — углерод. На участке 1—2 происходят плавление металла, на участке 2—3 — частичное оплавление со значительным ростом зерна участок 3—4 соответствует процессу нормализации структуры с измельчением зереи на участке 4—5 происходит частичная перекристаллизация, на участке 5—6—рекристаллизация зерен на участке 6—7 температура снижается с 400 до 200° С — в этом интервале температур наблюдается синеломкость у сталей, склонных к старению. Здесь по границам зерен скапливаются нитриды и карбиды и пластичность стали снижается. Нагрев до температур ниже 200 С ие вызывает изменения структуры и свойств стали. Следует отметить, что рассматриваемая схема является условной она использована для пояснения темперного влияния на структуру металла в процессе сварки.  [c.131]


На рис. IV. представлена схема плавильного пространств , кристаллизующейся сварочной ванны и распределения температур впереди и позади дуги при сварке под флюсом. По мере перемещения электрической дуги металл сварочной ванны в ее хвостовой части и по бокам быстро охлаждаетсч благодаря отводу тепла в основной металл и при достижении температуры плавления (точнее, температуры кристаллизации) затвердевает (кристаллизуется). Фронт кристаллизации продвигается вслед за перемещающейся дугой с кратковременными остановками, обусловленными периодичностью охлаждения. Кристаллы растут в направлении, обратном криволинейной поверхности теплоотвода, разделяющей нерасплавленный основной металл и жидкий металл ванны. Периодичность процесса кристаллизации, по мнению большинства исследователей, обусловлена тем, что после затвердевания первого слоя охлаждение жидкого металла на некоторое время задерживается в связи с выделением скрытой теплоты плавления. Непрекращающийся отвод тепла в глубь основного металла обусловливает кристаллизацию второго слоя и т. д. В связи с этим в шве обнаруживаются слои кристаллизации (выявляемые специальным травлением), имеющие поверхность, соответствующую поверхности теплоотвода. Толщина каждого кристаллизационного слоя не превышает десятых долей миллиметра и находится в прямой зависимости от размера сварочной ванны и в обратной зависимости от скорости теплоотвода.  [c.271]


Смотреть страницы где упоминается термин Сварка плавлением схема процесса : [c.159]    [c.762]    [c.712]    [c.272]    [c.29]    [c.161]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.11 , c.14 ]



ПОИСК



Плавление

Процесс сварки

Сварка Схемы процесса

Сварка плавлением

Сыр плавленый



© 2025 Mash-xxl.info Реклама на сайте