Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Профили тонкостенные 3 — 298 Центр изгиба

В общем случае для отыскания координат центра изгиба необходим специальный расчет. Однако для некоторых тонкостенных открытых профилей положение центра изгиба является очевидным (рис. 12.44), поскольку очевидно положение точки, относительно которой момент всех касательных сил, распределенных по поперечному сечению, равен нулю.  [c.167]

Порядок определения напряжений. Расчет начинается с вычисления помимо обычных еще и специальных геометрических характеристик тонкостенного профиля — его центра изгиба, главной эпюры единичной депланации и бимомента инерции, после чего определяются изгибно-крутящие бимоменты в отдельных сечениях.  [c.177]


КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ ПРИ ИЗГИБЕ БАЛОК ТОНКОСТЕННОГО ПРОФИЛЯ. ЦЕНТР ИЗГИБА  [c.313]

Определим теперь центр изгиба для общего случая несимметричного тонкостенного профиля (рис. 392),  [c.338]

Этот вопрос не представляет практического интереса для всех специальностей, кроме строительных, поэтому в ныне действующей программе ему уделено небольщое внимание и формулу Журавского предусмотрено давать без вывода. Правда, для тех-ников-авиастроителей существенное значение имеет вопрос о центре изгиба брусьев тонкостенных профилей, связанный с касательными напряжениями, но, видимо, даже за счет времени, отводимого на дополнительные вопросы программы, рассмотреть его не удастся, а изучать его будут в курсе расчета самолета па прочность.  [c.133]

Как известно, открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка заделана так, что депланация сечения в заделке становится невозможной, то будет иметь место так называемое стесненное кручение, при котором в поперечном сечении возникают не только касательные, но и значительные нормальные напряжения. Поэтому желательно принимать меры, устраняющие кручение в балках прокатного профиля. Обычно по этой причине ставят симметричное сечение из двух швеллеров. Если же профиль один, а нагрузка значительна, то ее нужно выносить из главной плоскости так, чтобы она проходила через точку С (на рис. 313, б такое положение нагрузки показано пунктиром на рис. 313, г дан один из возможных вариантов конструктивного оформления вынесения нагрузки). В этом случае участок балки длиной х полностью уравновешивается силами Р, Q x) = P и моментом М х) = Рх кручения не будет. Поэтому точка С называется центром изгиба (иногда — центром жесткости). Центры изгиба всех сечений балки расположены на прямой, которая называется осью жесткости балки (рис. 313, б).  [c.340]

Заметим, что нагрузка р хз) не обязательно должна лежать в плоскости x-iXi, она может действовать в параллельной плоскости. Величины прогибов и нормальных напряжений при изгибе от этого не меняются, как будет видно из приводимого ниже вывода. Однако касательные напряжения зависят от положения плоскости действия сил, они могут потребовать для своего уравновешивания приложения к торцам балки крутящих моментов. Если ось х-2. есть ось симметрии сечения, то, очевидно, крутящий момент не потребуется, если нагрузка лежит в плоскости Хг, Хз, нагрузка в любой параллельной плоскости будет вызывать кручение. Однако, если ось есть главная центральная ось сечения, по не ось симметрии, и нагрузка лежит в плоскости Хг, Хз, изгиб, как правило, будет сопровождаться кручением чтобы кручения пе было, ось х должна проходить не через центр сечения, а через некоторую точку, называемую центром изгиба. Элементарная теория, позволяющая найти центр изгиба для тонкостенных стержней открытого профиля, была изложена в 3.7, распространение ее на стержни произвольного сечения служит предметом теории изгиба Сен-Венана, которая в этой книге излагаться не будет.  [c.387]


Если плоская фигура имеет ось симметрии, то эта ось является главной центральной осью инерции, а главный полюс Р тонкостенного профиля (центр изгиба) лежит на этой оси. Докажем это.  [c.216]

Центр изгиба тонкостенных стержней открытого профиля. Как  [c.336]

Вопрос о центре изгиба становится особенно важным для тонкостенных сечений открытого профиля. Для таких сечений его можно легко определить с достаточной точностью, предполагая, что касательные напряжения по толщине сечения распределены равномерно и параллельны срединной поверхности ).  [c.376]

Построить эпюру касательных напряжений по сечению и вычислить с , и для балки тонкостенного уголкового профиля пролетом /=40 см, изгибаемой силой Р=2Ъ кГ, приложенной в центре изгиба сечения, в двух случаях 1) сила Ру=Р направлена вертикально и 2) сила направлена горизонтально. Размеры сечения 6=40 мм, t=2 мм. Указать положение центра изгиба.  [c.116]

Определить расстояние Хо до центра изгиба сечения тонкостенной трубы, имеющей продольный разрез (см. рис.). 4.150. Определить положение центра изгиба профиля (см. рис.).  [c.118]

Координаты центра изгиба для сплошных незамкнутых тонкостенных профилей, сечения которых имеют ось симметрии и могут быть разложены на элементы с осями симметрии, совмещенными с осью симметрии всего сечения, можно определить аналогично нахождению центра параллельных сил. С этой целью моменты инерции отдельных элементов сечения J ,. .. следует представить в виде взаимно параллельных векторов, проходящих через центры изгиба соответствующих элементов сечения. Тогда линия действия равнодействующего вектора J будет проходить через центр изгиба составного профиля.  [c.130]

Целью работы является демонстрация наличия крутильного эффекта, возникающего при поперечном изгибе тонкостенной балки открытого профиля, и экспериментальная проверка расчетной формулы для определения положения центра изгиба .  [c.183]

Практический интерес центр изгиба представляет лишь для тонкостенных открытых профилей, по причине, которая будет пояснена ниже.  [c.167]

Практическое значение понятия центра изгиба. В балках открытого тонкостенного профиля наблюдается некоторое явление, сущность которого объясняется ниже. Как будет показано, с этим явлением связано понятие центра изгиба.  [c.168]

Определение координат центра изгиба в случае тонкостенного открытого профиля произвольного вида.  [c.170]

Рис. 12.48. К определению центра изгиба произвольного тонкостенного открытого профиля а) полюс совмещен с началом координат б) дифференциалы секторных площадей, соответствующие полюсам Л и В е) секторные площади, соответствующие полюсам А и В. Рис. 12.48. К <a href="/info/12023">определению центра изгиба</a> произвольного тонкостенного <a href="/info/7033">открытого профиля</a> а) полюс совмещен с началом координат б) дифференциалы <a href="/info/47180">секторных площадей</a>, соответствующие полюсам Л и В е) <a href="/info/47180">секторные площади</a>, соответствующие полюсам А и В.
Механическое условие, определяющее положение центра изгиба. Рассмотрим произвольный тонкостенный открытый профиль (рис. 12.48). Условием для отыскания координат центра изгиба С является равенство нулю относительно этого центра момента (формула (12.81)), создаваемого касательными силами в поперечном сечении,  [c.172]

В главах XI и XII деформация тонкостенных стержней уже обсуждалась. В главе XI рассматривалось свободное кручение тонкостенных стержней открытого и замкнутого профиля и в главе XII — определение касательных напряжений в тонкостенных стержнях при поперечном изгибе и определение координат центра изгиба в поперечном сечении тонкостенного стержня открытого профиля. Ниже излагается теория стесненной деформации тонкостенных стержней открытого профиля.  [c.382]


Таким образом, при условии, что точка А является центром кручения, мы пришли к необходимости удовлетворения тем же требованиям, что и при отыскании центра изгиба и совпадающего с ним главного секторного полюса. Иными словами, центр кручения и центр изгиба в поперечном сечении тонкостенного стержня открытого профиля совпадают.  [c.403]

Влияние на кручение изгибающих моментов. В тонкостенных стержнях открытого профиля возникает эффект стеснения депланации и при воздействии на стержень внешнего изгибающего момента. Следует строго разграничивать случаи образования внешнего изгибающего момента поперечными силами (как это было показано выше) и продольными силами. На рис. 14,20 показан стержень швеллерного сечения. На рис. 14.20, а изображена эпюра секторных площадей этого сечения. На рис. 14.20, б, в показаны два варианта создания изгибающего момента поперечными силами и продольными силами, действующими в одной и той же плоскости. При этом изгибающий момент, созданный поперечными силами, кручения стержня не вызывает, поскольку плоскость его действия проходит через центр изгиба. Продольные же силы, образующие изгибающий момент, вызывают кручение, поскольку сила Р, приложенная в точке В, где ордината эпюры со не равна нулю, создает бимомент В = Р(о . На рис. 14.20, г, д изображен другой случай расположения линий действия поперечных и продольных сил, создающих изгибающий момент. В этом случае момент, создаваемый поперечными силами, вызывает кручение, поскольку плоскость его действия не проходит через центр изгиба сечения, а изгибающий момент, создаваемый продольными силами, кручения не вызывает, так как в точках приложения обеих сил (точки 5 и ординаты эпюры и равны нулю, и следовательно, бимомент, соответствующий этим силам, равен нулю. Пусть момент представляется как результат  [c.415]

Центр изгиба 27, 177 ----изгиба для тонкостенных профилей 102  [c.562]

Для определения усилий в рассматриваемом сечении проводят три оси главные оси сечения / и i, проходящие через его центр тяжести, и ось О, перпендикулярную к плоскости рассматриваемого сечения и проходящую через центр изгиба сечения (см. фиг. 126). Последний представляет собой точку поперечного сечения, через которую проходит плоскость действия поперечной нагрузки, не вызывающей напряжений скручивания если сечение имеет две оси симметрии, то центр изгиба совпадает с центром тяжести сечения. Положение центра изгиба для основных сечений дано в табл. 19 определение центра изгиба для тонкостенных профилей—см. гл. П1.  [c.92]

Следовательно, чтобы избежать кручения балок тонкостенных профилей необходимо использовать симметричные сечения. Если же тонкостенное сечение несимметричное, то чтобы не было кручения необходимо, чтобы все внешние нагрузки пересекали ось центров изгиба или ось жесткости балки.  [c.142]

Построить эпюру распределения касательных напряжений по контуру профиля и найти положение центра изгиба сечения тонкостенной балочки, подвергающейся изгибу в вертикальной плоскости,  [c.164]

Если в тонкостенном профиле полюс секториальных координат совместить с центром изгиба, то секториально-линейные статические моменты обратятся в нуль.  [c.256]

О — центр тяжести сечения С центр изгиба а — коэффициент Пуассона Центр изгиба тонкостенных профилей различной формы см. гл. IV  [c.102]

Для тонкостенных сечений, имеющихся у балок с прокатными профилями, положение центра изгиба и величины других геометрических характеристик, тре-брощйхся для расчета, находят в специальных таблицах сортамента или вычисляют  [c.145]

Сравнительная оценка влияния отклонения линии действия силы от центра изгиба на погонный угол закручивания массивного и тонкостенного стержня открытого профиля. Сопоставим влияние эффекта кручения, возникающего вследствие приложения силы Р не в центре изгиба, а в центре тяжести, для двух поперечных сечений — массивного—в виде половины круга и открытого тонкостенного — в виде половины кольца. Не приводя решения, отметим, что ценр изгиба (см. В. В. Новожилов, Теория упругости, гл. VI, 21, стр. 288)  [c.344]

Тимошенко С. П., Применение функции напряжений к исследованию изгиба и кручения призматических стержней. Сб. Спб ин-та инженеров путей сообщения, Спб, 1913, вып. 82, стр. 1—24 отд. оттиск Спб, 1913, 22 стр. (Замечание. В этой статье была найдена такая точка в поперечном сечении балки, к которой следовало бы приложить сосредоточенную силу, чтобы устранить кручение. Таким образом, эта работа оказывается первой, где определялся центр сдвига балки. Рассмотренная балка имела сплошное поперечное сечение в форме полукруга [8.2]. В 1909 г. К- Бах провел испытания швеллерных балок и кащел, что, когда нагрузка прикладывается параллельно плоскости стенки, в балке возникает кручение (см. [8.3] и [8.4]). Он также обнаружил, что закручивание изменяется при боковом смещении нагрузки, но, по-видимому, центр сдвига им не был определен. В 1917 г. А. А. Гриффитс и Дж. Тейлор использовали для исследования изгиба метод мыльной пленки для некоторых типов конструкционных профилей они определили центр сдвига, который был ими назван центром изгиба [8.5]. Общее приближенное решение задачи определения центра сдвига тонкостенного стержня незамкнутого профиля было получено Р. Майяром, который объяснил практическое значение определения центра сдвига в конструкционных профилях [8.6] и ввел термин центр сдвига . Дальнейшее развитие концепции центра сдвига содержалось в работах [8.7—8.16], Всестороннее обсуждение центра сдвига, а также задачи изгиба и кручения балок в общей постановке проведено в работе [8.17] некоторые исторические замечания, относящиеся к центру сдвига, можно найти в работах [8.18] и [8.19].)  [c.555]


Следует учесть, что брусья тонкостенного открытого профиля (типа швеллера) плохо сопротивляются деформации кручения поэтому при использовании таких брусьев в качестве элементов конструкций, работающих на изгиб, следует принимать конструктивные меры для такой передачи нагрузки, при которой плоскость ее действия проходит через центры изгиба поперечных сечений бруса. В частности, для швеллерной балки это можно осуществить, прикладывая нагрузку к угловому коротьшу, приваренному к ее стенке (см. рис. 62.7, а).  [c.315]


Смотреть страницы где упоминается термин Профили тонкостенные 3 — 298 Центр изгиба : [c.140]    [c.338]    [c.209]    [c.194]    [c.164]    [c.169]    [c.170]    [c.385]    [c.27]    [c.25]    [c.26]    [c.27]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.102 ]



ПОИСК



Касательные напряжения при изгибе балок тонкостенного профиля Центр изгиба

Профили тонкостенные 3 — 298 Центр изгиба под действием кручения

Профиль тонкостенный

Профиль центр

Центр изгиба

Центр изгиба изгиба для тонкостенных профилей

Центр изгиба изгиба для тонкостенных профилей



© 2025 Mash-xxl.info Реклама на сайте