Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магния основные свойства

Магния основные свойства 235  [c.508]

Методом непрерывной пропитки пучка волокон расплавленным металлом получали прутки композиционного материала магний— бор длиной 0,9 м, содержащие 25—75 об. % борных волокон [97, 100]. Основные свойства этого материала приведены в табл. 15. Полученные прутки имеют, таким образом, высокий предел  [c.94]

Литейные цинковые сплавы. Для литья под давлением применяют тройные сплавы цинк—алюминий—магний и четверные сплавы цинк—алюминий—медь— магний (см. табл. 1). Добавки алюминия, меди и магния повышают прочность и улучшают жидкотекучесть цинка, а также способствуют стабилизации размеров и свойств отливок. Литейные сплавы готовят из цинка наиболее высокой чистоты. Наличие в цинковых сплавах более 0,005% кадмия, 0,005% олова и 0,007% свинца уменьшает их коррозионную стойкость. При содержании в сплавах более 0,1% железа образуется много шлака в жидком состоянии. Основные свойства литейных цинковых сплавов приведены в табл. 2.  [c.271]


Расчет Л Фр. проводят по формуле (7) при номинальных значениях основных свойств МТМ, взятых из ГОСТ 17809—72. Учитывая достаточную сложность математической модели системы со стабилизированным магни-то.м из литых МТМ, для определения относительных коэффициентов влияния первичных магнитных параметров на Ф был использован метод численного дифференцирования [14]  [c.232]

Каковы основные свойства кальция, магния и натрия  [c.42]

Охарактеризуйте основные свойства магния. В каком виде используется магний как конструкционный материал  [c.223]

Из сопоставления основных свойств магния, алюминия и цинка в свете требований, предъявляемых к протекторной установке, очевидно, что более эффективными материалами по количеству получаемой электроэнергии на единицу веса будут алюминий и магний, причем по величине создаваемой электродвижущей силы следует отдать предпочтение магнию. Вместе с тем магний обладает высокой собственной скоростью коррозии и с этой точки зрения он будет менее эффективным, чем цинк и алюминий. Снижение собственной скорости коррозии протекторов может быть обеспечено двумя путями повышением их химической чистоты, т. е. уменьшением количества растворенных в них вредных примесей (железа, никеля, меди), или созданием специальных сплавов, более эффективных, чем исходные металлы.  [c.212]

Из сопоставления основных свойств магния, алюминия и цинка в свете требований, предъявляемый к протекторам, очевидно, что более эффективными материалами по количеству получаемой энергии на единицу веса будут алюминий и магний, причем по величине создаваемой электродвижущей силы следует отдать предпочтение магнию. Вместе с тем ввиду высокой собственной  [c.167]

Магний в щелочах не растворяется, хотя его потенциал значи тельно ниже окислительного потенциала водорода. Это объясняется тем, что магний образует гидрат с основными свойствами, нерастворимый в щелочи покрываясь тонкой пленкой этого гидрата, магний становится пассивным.  [c.42]

Из сопоставления основных свойств магния, алюминия и цинка в свете требований, предъявленных к протекторной установке, очевидно, что более эффективными материалами по количеству получаемой энергии на единицу массы являются алюминий и магний, причем по величине создаваемой электродвижущей силы предпочтительнее магний. Вместе с тем ввиду высокой собственной скорости коррозии магниевого протектора его к. п. д. меньше, чем цинка и алюминия. Уменьшения собственной скорости коррозии протекторов можно добиться, снизив количество растворенных в основных металлах вредных примесей (железа, никеля, меди) или создав специальные сплавы, которые более коррозионностойки, чем исходные металлы.  [c.258]


Необходимость применения сверхчистых материалов обусловлена тем, что их основные физико-химические и механические свойства претерпевают резкие изменения даже при ничтожно малых содержаниях примесей. Так, миллиардная доля примесей изменяет электрические характеристики германия и других полупроводниковых материалов. Присутствие даже ничтожного количества некоторых примесей резко повышает способность металлов, например циркония, алюминия, магния, к поглощению тепловых нейтронов и тем самым лишает их основного свойства, необходимого для использования в атомной технике.  [c.175]

Цветные металлы медь, олово, свинец, цинк, никель алюминий, магний их основные свойства и область применения.  [c.506]

Основные свойства магния  [c.55]

Основные свойства алюминиевых сплавов связаны со свойствами твердых растворов легирующих элементов в А1 и интерметаллидными фазами, которые являются упрочняющими при равномерном распределении. Эти фазы обычно повышают коррозионную стойкость и жаропрочность сплавов. Легирование алюминия, например, железом,-кобальтом, церием, магнием (рис. 2.39), медью (рис. 2.40), приводит к росту Ов и р, уменьшению 5.  [c.207]

Основные свойства плазмы. В резком отличии св-в П. от св-в нейтр. газов определяющую роль играют два фактора. Во-первых, вз-ствие ч-ц П. между собой характеризуется кулонов-скими силами притяжения и отталкивания, убывающими с расстоянием гораздо медленнее (т. е. значительно более да л ьно действующими ), чем силы вз-ствия нейтр. ч-ц. По этой причине вз-ствие ч-ц в П. является, строго говоря, не парным , а к о л л е к-т и в н ы м — одновременно взаимодействует друг с другом большое число ч-ц. Во-вторых, электрич. и магн. поля очень сильно действуют на П., вызывая появление в П. объёмных зарядов и токов и обусловливая целый  [c.536]

Промышленностью освоен выпуск свыше 25 марок ферритов с ППГ. Широкое распространение получили магний-марганцевые и литиевые ферриты со структурой шпинели. Для улучшения свойств используются легирование их ионами цинка, кальция, меди, натрия и др. Основные характеристики ферритов с ППГ следующие коэффициент прямоугольности йпу = 0,9 0,94 остаточная индукция Вг = 0,15 0,25 Тл, температура Кюри Гк = ПО ч--г- 250 °С (для магний-марганцевых ферритов) 550 630 С (для литиевых), коэрцитивная сила для ферритов, используемых в схемах автоматического управления, лежит в пределах 10—20 А/м, для материалов, используемых в вычислительной технике, — 100—1200 А/м.  [c.105]

В настояш,ем разделе основное внимание уделяется никелю, цирконию, меди, бериллию, алюминию, магнию, молибдену, ниобию, танталу и вольфраму. Данные по влиянию излучения на механические свойства этих металлов и их сплавов сведены в табл. 5.6—5.13.  [c.253]

Основные физико-химические свойства магния, цинка и алюминия  [c.141]

В качестве материалов протекторов используют сплавы магния-с алюминием, цинком и марганцем алюминия с цинком, магнием, марганцем цинка с алюминием. Основная цель легирования — получение устойчивых электрохимических характеристик, высокой токо-отдачи и технологичности при изготовлении и установке протекторов. Важное значение имеет отсутствие вредных примесей, вызывающих пассивацию или повыщенное саморастворение протектора. Состав и свойства протекторных сплавов регламентированы нормативной документацией, так же как размеры протекторов, правила их установки для конкретных изделий.  [c.143]

Покрытия на основе жидкого стекла находят широкое применение в качестве основы протекторных грунтовок в этом случае они содержат в качестве пигментов металлические порошки (цинк, сплавы. цинка с магнием, алюминия с кальцием) и проявляются защитные свойства благодаря катодной поляризации защищаемого металла. При катодной защите вследствие растворения пигмента потенциал основного металла сдвигается до такого отрицательного значения,  [c.157]

Свойства некоторых рассольных и для сравнения других применяемых в химической промышленности хладоносителей приведены в табл. 19.1. Основным показателем, определяющим температурный интервал, в пределах которого возможно использование вещества в качестве хладоносителя, является температура его замерзания. Для обеспечения положительных температур охлаждаемых объектов обычно применяют воду, обладающую наилучшей совокупностью теплофизических свойств, а для умеренного холода — концентрированные водные растворы солей (рассолы), главным образом хлориды кальция, натрия, магния или их смеси.  [c.300]


Магниевые сплавы. Основными элементами, входящими в магниевые сплавы, кроме самого магния, являются А1, Zn, Мп, Первые два увеличивают прочность, а последний снижает склонность к коррозии. Вредными примесями являются Fe, Си, Si, N1. Магниевые сплавы обладают весьма высокой удельной прочностью (удельный вес магния 1,74 Псм , а его сплавов — ниже 2,0 Г/см ). Вследствие легкости сплавов магния их называют электронами. Применение магниевых сплавов позволяет уменьшать вес деталей, по сравнению с деталями из алюминиевых сплавов примерно на 20—30% и по сравнению с железоуглеродистыми — на 50—75%. Так же как и алюминиевые, магниевые сплавы делятся на литейные и обрабатываемые давлением. У последних высокая ударная и циклическая вязкость. Обработка давлением существенно повышает прочность магниевых сплавов. Механические свойства Mg литого и деформированного приведены в табл. 4.13. На основе магния созданы жаропрочные сплавы (см. раздел 13 настоящего параграфа).  [c.320]

Исследования проводились с углями из шести географических районов США. Для расширения диапазона исследований в некоторых опытах состав углей скорректирован добавлением соединений щелочных металлов (натрий п калий) и карбонатов кальция либо магния. Также был использован обогащенный уголь. Основные свойства углей приведены в табл. 2.5. Угли отличаются друг от друга преимущественно по составу золы. Из щелочных металлов количество KjO в золе меняется от 1,02 до 4,04 % (количество NajO в золе меняется от 0,86 до 0,24%). Количества оксида кальция и магния относительно малы. Содержание в золе SOa колеблется от 0,38 до 19,41 % и, по-видимому, связано с СаО и MgO. Нельзя не отметить присутствия незначительного количества хлора и высокое содержание железа.  [c.78]

Особую группу занимают безоловянныё свинцово-кальциевые баббиты БКА и БК2 (по ГОСТу 1209—59). Прочность этих баббитов повышается при естественном старении. Основной легирующий элемент — кальций — придает свинцовым сплавам антифрикционную структуру. Натрий повышает твердость сплава Олово в баббите БК2 улучшает его прилуживаемость (адгезию) к вкладышу подшипника, а также уменьшает угар сплава. Магний повышает твердость этого баббита, а также снижает угар натрия и кальция. Алюминий вводится в баббит БКА с целью модифицирования и улучшения его механических и антифрикционных свойств. Основные свойства баббитов приведены в табл. 8,  [c.252]

По своим химическим свойствам оксид магния — основной оксид и, как следствие этого, соединяется со всеми кислотными оксидами. Растворим в неорганических кислотах (частично в воде). Обожженный при высоких температурах, а также электроплавленый MgO противостоит действию органических кислот, кислотных газов и почти нерастворим в воде, однако подвержен действию водяного пара.  [c.139]

Существуют две разновидности карбонатов магния безвод ный (Mg Oa) и кристаллогидрат (МдСОз ЗН2О). Эти соединения редко встречаются в технологии обработки воды вследствие их относительно высокой растворимости, а также стабильности гидроокиси магния в широком диапазоне значений pH. Сообщается о существовании других форм гидратов и основных карбонатов. магния, но свойства этих соединений мало изучены и большинство из них, если не все, метастабильны в условиях обработки воды.  [c.369]

Влияние других легирующих элементов, помимо переходных металлов, на формирование УМЗ микроструктуры, ее стабильность и показатели СП изучено мало, точки зрения исследователей по этому вопросу не совпадают. Ниже приводятся некоторые экспериментальные данные о влиянии цинка, меди, магния— основных легирующих элементов, определяющих уровень технологических и экс-плуатационных свойств алюминиевых сплавов.  [c.167]

Стеатит — разновидность керамики, изготовляемая на основе талька 3MgO -4Si02 -Н,0. В то время как фарфор состоит в основном из силикатов алюминия, стеатитовая керамика — из силикатов магния. Электроизоляционные свойства стеатита высоки (рис. 20.12).  [c.202]

Керамика из двуокиси тория. Торий относят к радиоактивным металлам. Период его полураспада равен 1,4-10 лет. Сырьем для получения двуокиси тория является минерал монацит с содержанием двуокиси тория 5—28%. В результате сложной химической переработки монацита получают двуокись тория, которая обладает основными свойствами. Щелочи даже при сплавлении не взаимодействуют с двуокисью тория. Прокаленная двуокись тория не растворяется в кислотах. При температуре 2000° С двуокись тория в вакууме образует с углеродом карбид тория (ТЬСг), а с окислами бериллия (2100°С), циркония и магния <2200° С)—легкоплавкие соединения, алюминий и кальций вос- станавливают двуокись тория до металла.  [c.309]

В) и его стационарный электродный потенциал в 0,5%-ном растворе Na l (—1,4 В) сильно отрицательные, что и определяет возможность коррозии с водородной и кислородной деполяризацией в нейтральных растворах электролитов. При взаимодействии первичных продуктов коррозии — катионов магния Mg + с анионами ОН при рН Ю образуется труднорастворнмый гидроксид магния Mg(0H)2, который обладает основными свойствами. В соответствии с этим уменьшение pH раствора вызывает увеличение скорости коррозии, а увеличение pH приводит к ее понижению.  [c.140]

Неорганические О. — окиси и гидраты окисей (гидроокиси) металлов—характеризуются особыми, т. н. основными свойствами они растворимы в кислотах растворимые в воде О. (щелочи) отличаются щелочным (мыльным) вкусом, окрашивают красный лакмус в синий цвет, бесцветный фенолфталеин— в малиновокрасный и метилоранж— в желтый (см. Индикаторы в химии). Типичными, сильными основаниями являются гидроокиси щелочных и щелочноземельных металлов, О. средней силы—гидроокиси аммония и магния, окись серебра слабые О.—гидроокиси тяжелых металлов.  [c.132]


Гидрат окиси магния М (ОН) — белый порошок. Обладает основными Свойствами, представляя собой оснопа1 ие средней силы.  [c.277]

Основные связующие. Представители этой группы связующих — азотнокислый кальций и жидкое стекло. Азотнокислый кальций растворим в метиловом спирте (см. табл. 6.7), после прокаливания оболочки он образует окись кальция — собственно связующее, которое в сочетании с основой из плавленой или спеченной окиси магния или с очисью кальция дает возможность изготовлять высокоогнеупорные оболочки, химически стойкие к сплавам с основными свойствами.  [c.192]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

Легкие сплавы делятся на. ттейные и деформирусмь/с. Vli алюминиевых литейных сплавов наиболее распространены силумины (АЛ2, АЛ4 и др.), т. е. сплавы, в которых кремния содержится до 20%. Эти сплавы обладают высокими литейными свойствами и хорошо обрабатываются резанием. Из алюминиевых деформируемых сплавов основное применение имеют дюралю-мины (Д1, Д16 и др.) — сплавы, содержащие алюминий, медь, магний и марганец. Заготовки деталей машин из этих сплавов получают обработкой давлением.  [c.40]

Для изготовления высокочастотных высоковольтных изоляторов применяют стеатитовую керамику, так как фарфор имеет сильную. зависимость электрических характеристик от температуры из-за наличия большого количества полевошпатового стекла с повы-1иенной электропроводностью. Стеатитовая керамика изготовляется на основе-тальковых минералов, основной кристаллической фазой которых является метасиликат магния MgO-SiOj. Стеатитовые материалы характеризуются высокими значениями р, в том числе при высокой температуре, малым tg б, за исключением материала группы 210 ГОСТ 20419—83, предназначенного для производства крупных высоковольтных изоляторов. Стеатитовая керамика характеризуется высокими механическими свойствами, стабильно-  [c.240]

Магнитные сплавы не только с магнитной, но и с кристаллической текстурой имеют более высокие свойства. Кристаллическая текстура создается направленной кристаллизацией вдоль внешнего магнитного поля при термомагнитной обработке. Магнит в основном состоит из параллельных кристаллов столбчатой формы, расположенных в виде колоннады. Кристаллическая текстура создается вдоль направления легкого намагничивания, внутри столбчатого кристалла магнитная линия пересекает небольшое число границ между зернами. Кристаллическую текстуру получают либо использованием нагреваемых форм для литья, либо применением зонной переплавки в том и другом случае нижняя часть формы или заготовки охлаждается при помощи холодильника, рост столбчатых кристаллов начинается от охлаждаемого основания магнита. По первому способу керамическую форму для отливки магнита ставят на холодильник и помещают в графитовый цилиндр, при помощи которого в индукционной печи форму нагревают до 1550° С. После залнвки металла форму медленно охлаждают. По второму способу определенная зона в отливке, находящейся в керамической форме, нагревается высокочастотным индуктором при его  [c.266]

Магнитный метод имеет две разновидности. Отрывной магнитный метод (рис. 5.1, а) основан на измерении с помощью пружины 4 усилия, которое необходимо приложить к магниту для отрыва его от поверхности покрытия 2, нанесенного на основной металл 1. Сила отрыва магнита коррелирует с толщиной покрытия. Метод хорошо зарекомендовал себя в производственных условиях при серийном и массовом выпуске изделий [134]. Для определения толщины покрытий предварительно строятся градуировочные кривые для эталонных юбразцов с известной то.чщиной покрытия, К недостаткам метода следует отнести влияние чистоты и структуры покрытия, а также термической обработки и химического состава основного металла на результаты измерений. Метод применяется для оценки толщины немагнитных покрытий, нанесенных на ферромагнитную основу, возможно использование его и в тех случаях, когда магнитные свойства материалов резко различаются. Некоторые приборы, основанные на этом методе, выпускаются серийно (толщиномер конструкции Н. С. Акулова, ИТП-5 и др.) и характеризуются простотой конструкции и портативностью. Пределы измерения этими толщиномерами О—2000 мкм. Наибольшая погрешность измерения 10% продолжительность измерения 5—6 с. В некоторых конструкциях приборов постоянный магнит заменен на электромагнит, и усилие измеряется не пружинными динамометрами, а изменением силы тока намагничивания.  [c.82]

Коррозия металлов в природных водах и грунтах является в основном процессом, протекающим с кислородной деполяризацией по катодной частичной реакции в соответствии с уравнением (2.17). Выделение водорода из воды по уравнению (2.19) даже в присутствии очень неблагородных металлов типа магния, алюминия и цинка сильно затруднено в принципе оно возможно по уравнению (2.18) из кислот, например из раствора двуокиси углерода или из органических кислот, содержащихся в грунте. Однако агрессивное коррозионное действие кислот обусловливается не столько их участием в катодной частичной реакции, сколько затруднением образования защитного поверхностного слоя из продуктов коррозии. Из-за этого протекание промежуточных частичных реакций по уравнениям (2.17) и (2.21) затормал<ивается в меньшей степени. Знание свойств образующихся поверхностных слоев весьма существенно для понимания механизма коррозии металлов в природных водах и грунтах [1].  [c.132]

Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу.  [c.74]


Цирконий и его сплавы. Основное применение как конструкционный материал цирконий находит в ядерной технике — в атомных реакторах — вследствие особого свойства — слабо поглощать тепловые нейтроны. О материале, обладающем таким свойством, говорят, что он имеет малое поперечное сечение поглощения тепловых нейтронов. У циркония сечение поглощения тепловых нейтронов равно 0,18-10" см , у алюминия 0,2Ы0 см , однако он уступает цирконию в коррозионной стойкости, чем и объясняется ислользование циркония. Меньшее сечение поглощения тепловых нейтронов, чем у циркония, имеют магний (0.059-10-2 сл ) и бериллий (0,009-lO см ).  [c.326]


Смотреть страницы где упоминается термин Магния основные свойства : [c.372]    [c.216]    [c.373]    [c.564]    [c.242]    [c.370]    [c.74]    [c.238]    [c.253]   
Металловедение и технология металлов (1988) -- [ c.235 ]



ПОИСК



Магний

Магний Свойства

Мер основные свойства



© 2025 Mash-xxl.info Реклама на сайте