Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия неметаллических материалов

Во второй том будут включены разделы допуски и посадки, средства измерения размеров, химия (основные сведения, химическая обработка металлов) металлы и сплавы, термическая и химикотермическая обработка стали и чугуна, защита от коррозии неметаллические материалы (минералокерамика, изготовление деталей из пластмасс, резина, эбонит, графит) сортамент чер 1ых и цветных металлов процессы обработки без снятия стружки (литье, ковка, горячая и холодная штамповка).  [c.5]


Вопрос устойчивости к коррозии неметаллических материалов в литературе освещен значительно меньше, чем металлов.  [c.128]

Появился ряд монографий и научных обзоров в этой области. Учебников же или учебных пособий по коррозии неметаллических материалов до настоящего времени не было. Этой проблеме были посвящены лишь небольшие разделы в учебной литературе по коррозии и защите металлов. Теоретические ас-  [c.7]

Для металлизации применяют проволоки медные, алюминиевые, стальные и цинковые, а также неметаллические материалы в виде Порошков (стекла, эмали, пластмасс). Металлизационный слой состоит из мелких поверхностно-окисленных частичек металла и имеет меньшую прочность и плотность по сравнению с наплавленным слоем. Металлизацию применяют для защиты от изнашивания, коррозии, а также в декоративных целях для таких изделий, как Цистерны, бензобаки, мосты, изнашивающиеся части валов, деталей машин и т. п.  [c.229]

Исследование щелевой коррозии. Щелевая коррозия является характерным видом коррозионного разрушения химической аппаратуры в условиях наличия зазоров, застойных зон, при контакте металлической поверхности с неметаллическими материалами н др. (см. гл. VI). При исследовании щелевой коррозии обычно моделируют щелевые условия путем создания различных щелей и зазоров. На рис. 227 показан один из способов создания зазоров с помощью прокладок из резины, пластмасс, картона и других неметаллических материалов. Склонность металла этой пары к щелевой коррозии оценивается по потере массы и внешнему виду.  [c.349]

Большинство неметаллических материалов, главным образом па силикатной основе и в меньшей степени на органической основе, широко применяются в качестве футеровочных материалов по металлической поверхности аппаратов с целью их защиты от коррозии. Футеровка плитами из керамики, каменного литья и графита, а также плитками и блоками из горных пород нашла распространение в производствах минеральных кислот и меньше в производстве щелочей.  [c.456]

Изменение свойств а разрушение неметаллических материалов под действием окружающей среды отличается от коррозии металлов как 1Ю механизму процесса, так и по характеру взаимодействия с рабочими средами.  [c.29]

Однако многие другие авторы считают что с целью унификации терминологии термин "коррозия" целесообразно использовать и для неметаллических материалов.  [c.29]

Коррозия — разрушение металлов в результате химической или электрохимической реакции. Разрушение (порча), происходящее по физическим причинам, не называется коррозией и известно как эрозия, истирание или износ. В некоторых случаях химическое воздействие сопровождается физическим разрушением и называется коррозионной эрозией, коррозионным износом или фреттинг-коррозией. Это определение не распространяется на неметаллические материалы. Пластмассы могут набухать или трескаться, дерево — расслаиваться или гнить, гранит может крошиться, а портландцемент — выщелачиваться, но термин коррозия относится только к химическому воздействию на металлы.  [c.16]


В настоящем разделе дается характеристика химической стойкости наиболее распространенных видов конструкционных материалов для ориентировочной оценки возможности использования в различных отраслях техники в приложении 1 приведены справочные данные, содержащие значения скоростей коррозии металлов и сплавов и показатели стойкости неметаллических материалов в некоторых жидких и газообразных средах.  [c.6]

Применение эмалированных покрытий и неметаллических материалов снижает коррозию менее нагретых поверхностей воздухоподогревателя. Поверхности покрывают кислотоупорными и термостойкими эмалями толщиной 0,5— 0,6 мм. Из рис. 76 видно, что скорость к коррозии холодных частей РВП в случае применения набивок с эмалированным покрытием мало зависит от температуры <от стенки. Одним из направлений снижения коррозии, особенно при сжигании в топке котла высокосернистых мазутов, является использование неметаллических материалов стекла, фарфора, пластиков, слабо подвергающихся воздействию серной кислоты. Известны конструкции ТВП со стеклянными трубками и РВП с фарфоровыми трубками диаметром 28 мм на выходе. Однако не все проблемы создания таких конструкций решены у стеклянных ТВП — плохая герметичность соединения металлических частей и стеклянных трубок у РВП — повышенное загрязнение керамики отложениями.  [c.116]

Клеевые соединения применяют для деталей из металла и неметаллических материалов. Достоинства — возможность соединения разнородных материалов, герметичность, стойкость против коррозии, возможность соединения очень тонких листовых деталей, малая концентрация напряжений. Недостатки — сравнительно невысокая прочность, низкая теплостойкость.  [c.33]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]

Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды.  [c.13]


Несмотря на то, что электрохимическая коррозия имеет значение уже в начале инкубационного периода, определяющим фактором является прежде всего механическое воздействие воды при разрушении паровых полостей. Известно, что кавитации подвержены неметаллические материалы, например стекло. Случайные пики давления при разрушении полостей составляют несколько тысяч. мегапаскалей.  [c.27]

Наиболее эффективным способом консервации, причем весьма экономичным, является использование ингибиторов. Ингибиторы — химические соединения, способные предотвращать или тормозить коррозию металлов и сплавов либо при непосредственном контакте (контактные ингибиторы), либо в парофазном состоянии (летучие ингибиторы). Летучие ингибиторы используются в виде ингибированной бумаги, порошка или растворов, а контактные — в виде растворов в воде или маслах, смазках [25, 51 I. Летучие ингибиторы способны испаряться и попадать на поверхность изделия, включая труднодоступные места (щели, зазоры, трубопроводы). При этом летучие ингибиторы не способствуют старению неметаллических материалов. Контактные ингибиторы предохраняют металл при непосредственном нанесении на поверхность, поэтому их лучше применять для защиты несложных по конструкции изделий. В настоящее время известно большое количество ингибиторов самого различного назначения и вида. В практике консервации наибольшее применение нашли ингибиторы НДА (нитрит дициклогексиламина), КЦА (карбонат циклогексиламина), ХЦА (хромат циклогексиламина), ИФХАН-1, нитрит натрия, бензоат натрия и др. [27, 54].  [c.98]

В предлагаемом справочнике по коррозии собраны и обобщены сведения по коррозионному поведению, составам и применению металлических и неметаллических материалов в некоторых наиболее часто встречающихся средах, а также кратко описаны методы и средства защиты. Защита от коррозии металлическими и органическими покрытиями нами не рассматривается, поскольку по этому вопросу в Болгарии изданы специальные справочники .  [c.7]

Предлагаемый нами справочник состоит из нескольких разделов. Вначале изложены основные представления о коррозии металлов, действии ингибиторов и электрохимической защите металлических сооружений и конструкций. Приведены таблицы составов сталей различных марок и сплавов, выпускаемых в ряде промышленно развитых стран, а также торговые названия металлических и неметаллических материалов. Отдельно рассмотрены коррозионные и эксплуатационные характеристики широко применяемых металлов и потенциалы их реакций. Основная часть справочника посвящена коррозионному поведению металлических и неметаллических материалов в некоторых наиболее часто встречающихся коррозионных средах. Для удобства пользования справочником названия этих сред даны в алфавитном порядке.  [c.7]

Наука о химическом сопротивлении материалов обобщает сведения об их коррозии и защите, охватывая также и вопросы материаловедения, имеющие отношение к проблемам коррозионной стойкости. В соответствии с этим настоящий справочник состоит из трех частей. Первая часть содержит перечень всех материалов, коррозионные характеристики которых приводятся далее. Во всех случаях, где это возможно, даны ссылки на ГОСТы и ТУ, приведены краткие сведения о технологических свойствах выпускаемых полуфабрикатов и назначении материалов. Эти таблицы, охватывающие достаточно широкий круг металлических и неметаллических материалов, имеют и самостоятельную ценность, объединяя сведения, обычно не содержавшиеся в руководствах по коррозии.  [c.4]

Защита оборудования, от воздействия щелочных сред Защита от коррозиИ черных металлов и бетонов в качестве клея при соединении металлов с неметаллическими материалами  [c.57]

Коррозию, особенно при наличии механических напряжений, испытывают многие материалы. Корродировать — значит, постепенно растворяться или изнашиваться, в частности в результате химического воздействия среды. В широком смысле это просто ухудшение, разложение, разрушение. Именно в смысле разрушения в данной книге рассмотрено поведение не только металлов, но и неметаллических материалов в морских условиях. В последней главе, например, обсуждается действие морской воды на полимеры, керамику, ткани, электронные компоненты и взрывчатые вещества. Склонность этих материалов к биокоррозии и химическому разрушению в морской воде необходимо оценить, чтобы правильно определить их пригодность для морских условий.  [c.9]

Не менее важна специфика условий работы силовых цилиндров. Долговечность узла трения зависит прежде всего от износостойкости антифрикционного материала. Полиамиды имеют очень хорощую износоустойчивость в различных условиях абразивного трения они изнашиваются значительно меньше, чем металлы и другие неметаллические материалы. При использовании полимерных материалов в подшипниках скольжения практически отсутствует износ сопряженных с полимером металлических деталей. Обязательным условием для малого износа полиамидных антифрикционных деталей, работающих в паре с металлом, является высокая чистота сопрягаемой металлической поверхности. Легче всего это достигается применением закаляемой стали, которая обязательно должна быть защищена от коррозии. Установлено, что чем чище металлическая поверхность, тем меньше износ пластических масс при работе с этими поверхностями. Износостойкость пластмассовых подшипников значительно выше, чем бронзовых [47]. Долговечность полимерных вкладышей и втулок в 10 раз больше, чем металлических, что сокращает время ремонта.  [c.115]

При соединении деталей из магниевых сплавов с деталями из других материалов следует учитывать высокий коэффициент термического расширения сплавов, а также возможность возникновения контактной коррозии и агрессивности неметаллических материалов по отношению к магнию.  [c.130]


Эмульсии можно наносить на металлические и неметаллические материалы, а также на гальванические и лакокрасочные покрытия, дерево, кожу, резину, стекло, текстильные и синтетические материалы, пластмассу и т. д. Их применяют для временной защиты от коррозии изделий различного назначения и прежде всего автомобилей,  [c.70]

Лакокрасочные покрытия применяются для защиты металлов от коррозии, а неметаллических материалов (древесины и др.)—от увлажнения и загнивания они сообщают поверхности специальные свойства, например электроизоляционные, и придают изделиям декоративный внешний вид.  [c.582]

Излучение обычно ухудшает характеристики неметаллических материалов и способствует разложению многих рабочих жидкостей, вызывая появление продуктов коррозии.  [c.71]

Для металлизации применяют проволоки медные, алюминиевые, стальные и цинковые, а также неметаллические материалы в виде порошков (стекла, эмали, пластмасс). Металлизационный слой состоит из мелких поверхностно-окисленных частичек металла и имеет меньшие прочность и плотность по сравнению с наплавленным слоем. Металлизацию применяют для защиты от изнашивания, коррозии таких изделий, как цистерны, бензобаки, мосты, изнашивающиеся части валов, деталей машин и т.п., а также в декоративных целях. Дуговая металлизация - высокопроизводительный процесс, обеспечивает хорошее соединение покрытия с основным металлом. Недостатками его являются возможность перегрева и окисления наплавляемого материала и выгорание из него легирующих компонентов.  [c.273]

Для снижения низкотемпературной коррозии холодной части возможно применение эмалированных покрытий, неметаллических материалов (см. рис. 1.16, г), подогрева воздуха на входе в воздухоподогреватель.  [c.25]

Лакокрасочные покрытия предназначаются для защиты металлов от коррозии, неметаллических материалов (древесины, тканей, пластмасс) от увлалшения и гниения, придания им декоративного внешнего вида и для специальных целей электроизоляции, изменения коэффициента отражения световой энергии, повышения тепло-излучательной способности поверхности, повышения видимости и т. д.  [c.226]

В сборнике помещены работы, посвященные теоретическим и практическим проблемам коррозии теории коррозии, исследованию влияния различных факторов на коррозию, коррозии кон-с 1рукционных металлов и сплавов в химическом машиностроении, коррозии неметаллических материалов и методам защиты от коррозии.  [c.2]

На рис. 1 приведена упрощенная классификация применяемых в машиндстроении материалов. Черные металлы являются основным машиностроительным- материалом. Они сравнительно дешевы, обладают высокой прочностью. Цветные металлы и их сплавы дороги, но имеют высокие антифрикционные свойства, хорошо обрабатываются резанием и устойчивы против коррозии. Неметаллические материалы во многих случаях заменяют дорогостоящие металлы н пх сплавы. Все большее распространение в машиностроении получают пластмассы.  [c.14]

Книга также дополнена главой по подземной коррозии. Большое внимание, в ней уделено неметаллическим конструкционным материалам и защитным покрытиям на их основе. В гл. XXIV приведены и новые неметаллические материалы, например си-таллы.  [c.3]

Существенное отличие неметаллических материалов от металлов состоит в том, что они (за небольшим исключением) мало или овсе не электропроводны, и поэтому характер коррозии этих материалов отличен от характера коррозии металлов и спларов их разрушение вызывается химическими или физико-ме-хашн ескими факторами, но не электрохимическими процессами.  [c.353]

Лакокрасочные материалы предназначены для защиты металлов от коррозии, а неметаллических материалов (древесины, пластмасс и т.д.)-от увлажнения и загрязнения они сообщают поверхности специальные свойства (электроизоляционные, теплозащитные к др.) и придают декоративный внешний вид. Защита изделии от влияния внешней среды лакокрасочными покрытиями является наиболее доступной и широко применяется а машиностроении. С помощью защитных покрытий срок эксплуатации аппара1у1Ш оборудования,и металлоконструкций увеличивается в несколько раз.  [c.74]

Некоторые неметаллические материалы, например графит, могут увеличивать коррозию металлов. Контакт графита с железом или алюминием вызывает сильную коррозию этих "металлов, что обусловлено развитой поверхностью графита, способствующей адсорбщш кислорода или других деполяризаторов. Поэтому графитовые сальники или графитовые уплотнительные набивки в системах, подводящих электролит к ответственному оборудованию, нежелательны во избежание его засорения выпадающими частичками графита.  [c.202]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Щелевая коррозия наблюдается не только между поверхностями одного металла, но и когда металл соприкасается с неметаллическим материалом. Бели щель образуют два металла, то может наблюдаться комбинация щелевой и биметаллической коррозии (см. 4.12). Присутствие Q, Вг или Г обычно ускоряет этот тип коррозии. Подобно питтивгообразованию, щелевая коррозия иницшфуется только выше определенного электродного потенциала.  [c.28]

Делая выводы, можно сказать, что испольаование неметаллических материалов и покрытий из них - это наиболее перспективное направление зашнть металлов от корррш и коррозии под напряжением в настоящее (и ближайшее будущее) время. Противокоррозионные проблемы могут быть решены благодаря применению не отдельных методов, а комплексов известных методов и средств противокоррозионной защиты.  [c.134]

В спраиочнике приводятся данные по коррозии материалов в основных средах химических производств и нефтеперерабатывающих заводов, а также в воде н некоторых теплоносителях. От )ажено влияние агрессивных сред на механические свойства металлических и неметаллических материалов. Приведены краткие технологические характеристики, сведения о составе н области применения более 1000 марок материалов.  [c.2]

Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д.  [c.4]


Основным разделом справочника является его последняя, третья часть, содержащая систематизированные сведения о коррозионной стойкости материалов в различных жидких и газовых средах. Для металлов приведены количественные данные по скоростям коррозии. В отличие от большинства справочников, в таблице указаны также специфические виды коррозии точечная, язвенная, межкристаллитная, коррозионное растрескивание. Для неметаллических материалов принята трехиндексная качественная система оценки стойкости. В тех случаях, когда коррозионные исследования проводились на материалах уже устаревших марок, в таблицах 1 и 2 указаны, где возможно, современные марки, наиболее близкие к исследованным.  [c.5]

Рассмотрены асе факторы, вызывающие разрушение в различных морских условиях сталей, меди, никеля, алюминия, титана, а также неметаллических материалов, включая полимеры и композиционные материалы на их основе, керамику, изделия из бумаги, текстиль, магнитную ленту. Показано поведение деталей радиоэлектронной аппаратуры, ракетного топлива и взрывчатых веществ. Приведены сведения о скорости коррозии металлов и их сплавов на различных глубинах. Представлен экспериментальный материал, полученный при изучении свыше 20000 образцов сплавов 475 марок при их выдержке в натурных условиях от трех месяцев до трех лет. Описана также коррозия, контролируемая биофакторами, в применении к различным географическим районам.  [c.4]

Заметное повышение сопротивления коррозионно-усталостному разрушению образцов с эбонитовой втулкой связывают с образованием на поверхности стали плотной пленки из продуктов распада эбонита. Снижение коррозионной выносливости стали при контактировании с нежесткими неметаллическими материалами (фторопласт, резина), которые не создают заметной концентрации напряжений и не участвуют в электрохимических процессах, связано с циклическим трением, нарушающим сплошность оксидной пленки, и щелевой коррозией [127, с. 161-164]. Эти же факторы  [c.147]

Термин коррозия происходит от латинского слова orrosio , что означает разъедание. По отношению к металлу этот термин характеризует как сам процесс химического или электрохимического разъедания металлов и сплавов, так и результат действия этого процесса. Термин коррозия применяется также к явлениям химического разрушения неметаллических материалов. Так говорят, например, о коррозии бетона, цементного и строительного камня, пластмасс, дерева и других конструкционных и строительных материалов".  [c.7]

Изготовление коррозионностойкого химического оборудования является, по-видимому, второй по масштабу областью применения тантала. Помимо прочности и по существу полно11 инертности к воздействию сильно агрессивных нещелочных сред при обычных температурах (за исключением р2, HF и свободного SOa), тантал характеризуется чрезвычайно высокими коэф( )ициентами теплопередачи. Последнее обстоятельство позволяет применять конструкции с тонкими стенками для химического оборудования в случае отсутствия коррозии и пленок продуктов коррозии на поверхности, пузырькового типа парообразования па поверхности при нагревании большинства жидкостей и образования каплеобразного конденсата на паровом или конденсирующей стороне теплообменника. Из всех металлов тантал больше других напоминает по коррозионной стойкости стекло, и его часто используют в химическом машиностроении в сочетании со стеклом, футерованной стеклом сталью и другими неметаллическими материалами.  [c.740]


Смотреть страницы где упоминается термин Коррозия неметаллических материалов : [c.570]    [c.9]    [c.134]    [c.190]    [c.404]    [c.200]   
Смотреть главы в:

Материаловедение и противокоррозионные свойства неметаллических материалов  -> Коррозия неметаллических материалов


Справочная книжка энергетика Издание 3 1978 (1978) -- [ c.19 ]



ПОИСК



Защита от коррозии неметаллических материало

Коррозия бетона, железобетона и других неметаллических материалов

Коррозия металлов и неметаллических материалов

Коррозия металлов и неметаллических материалов в органических кислотах

Коррозия неметаллических материало

Коррозия неметаллических материало

Материалы неметаллические

Шта неметаллические



© 2025 Mash-xxl.info Реклама на сайте