Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия неметаллических материало

При испытаниях на щелевую коррозию геометрическая форма образцов должна имитировать щель, которая в свою очередь создается разными путями - с использованием либо двух однородных металлов, либо металла и неметаллического материала.  [c.165]

Материал Темпера- тура, Скорость коррозии металлов, мм/год или оценка стойкости неметаллических матер налов Литература  [c.525]

Процессы коррозии неметаллических полимерных материалов отличаются от процессов коррозии металлов механизм их изучен еще недостаточно. Так, если коррозия металлов происходит главным образом на границе раздела двух фаз металл—среда, то при коррозии полимерных материалов набухание и растворение под влиянием среды не только происходит на поверхности, но и распространяется в глубь материала и обусловливается процессами диффузии. При этом определяющими факторами являются природа материала и коррозионной сре-  [c.10]


Неправомерно заимствование методов исследований и оценки коррозионной стойкости из коррозии металлов и механическое перенесение их на неметаллические материалы. Тем не менее на начальной стадии исследований именно так и поступали. По этой причине в технической и справочной литературе до сих пор можно встретить лишь качественные оценки типа стоек , недостаточно стоек , не стоек , которые малозначимы с точки зрения прогнозирования длительной эксплуатационной пригодности неметаллического материала и тем более — для расчета силовых конструкций из него.  [c.10]

Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности.  [c.4]

Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды.  [c.13]

Не менее важна специфика условий работы силовых цилиндров. Долговечность узла трения зависит прежде всего от износостойкости антифрикционного материала. Полиамиды имеют очень хорощую износоустойчивость в различных условиях абразивного трения они изнашиваются значительно меньше, чем металлы и другие неметаллические материалы. При использовании полимерных материалов в подшипниках скольжения практически отсутствует износ сопряженных с полимером металлических деталей. Обязательным условием для малого износа полиамидных антифрикционных деталей, работающих в паре с металлом, является высокая чистота сопрягаемой металлической поверхности. Легче всего это достигается применением закаляемой стали, которая обязательно должна быть защищена от коррозии. Установлено, что чем чище металлическая поверхность, тем меньше износ пластических масс при работе с этими поверхностями. Износостойкость пластмассовых подшипников значительно выше, чем бронзовых [47]. Долговечность полимерных вкладышей и втулок в 10 раз больше, чем металлических, что сокращает время ремонта.  [c.115]


Перед проверкой технического состояния (дефектацией) сборки, детали очищают от грязи, продуктов износа и смазочных материалов, промывают и просушивают. Продукты износа и коррозии должны быть полностью удалены. Удаление следов коррозии рекомендуется проводить травлением или чисткой с применением абразивного материала. Допускается применение механического или ручного зачистного инструмента. При транспортировке и хранении рабочие поверхности деталей предохраняют от повреждений, упаковывая их в тару и обертывая рабочие поверхности тканью или парафинированной бумагой с установкой между деталями неметаллических прокладок.  [c.99]

Взаимодействие жидкого металла с конструкционным материалом отлично от процессов коррозии в воде и других неметаллических жидкостях и газах своим механизмом — сложным комплексом таких явлений, как растворимость материала и его компонентов в жидком металле, перенос массы, межкристаллитная коррозия, охрупчивание, адсорбционное понижение прочности, эрозионное разрушение и др. Рассмотрению воздействия жидких металлов на конструкционные материалы посвящен ряд работ [69 и др.]. Здесь дается лишь краткая характеристика этих специфических явлений.  [c.47]

Для работы при высоких температурах и давлениях применяют твердые сплавы типа стеллита или карбида вольфрама в виде твердого покрытия в паре с металлами, защищенными различными неметаллическими покрытиями. В частности в торцовых уплотнениях широко применяют детали с керамическими покрытиями (окись алюминия или окись циркония), обладающими большой стойкостью при высоких температурах. Из керамических материалов этого типа распространен материал на основе окиси алюминия. Керамические материалы для изготовления колец обладают хорошими показателями по износостойкости и сопротивлению коррозии.  [c.557]

Для металлизации применяют проволоки медные, алюминиевые, стальные и цинковые, а также неметаллические материалы в виде порошков (стекла, эмали, пластмасс). Металлизационный слой состоит из мелких поверхностно-окисленных частичек металла и имеет меньшие прочность и плотность по сравнению с наплавленным слоем. Металлизацию применяют для защиты от изнашивания, коррозии таких изделий, как цистерны, бензобаки, мосты, изнашивающиеся части валов, деталей машин и т.п., а также в декоративных целях. Дуговая металлизация - высокопроизводительный процесс, обеспечивает хорошее соединение покрытия с основным металлом. Недостатками его являются возможность перегрева и окисления наплавляемого материала и выгорание из него легирующих компонентов.  [c.273]

Разновидностью химических испытаний является широко используемый в различных целях (в том числе — для выявления дефектов, являющихся очагами локальной коррозии на поверхности стальных изделий, защищенных металлическими или неметаллическими покрытиями) метод цветных индикаторов. Сущность метода заключается в накладывании на поверхность металла пористого гигроскопичного материала (часто — фильтровальной бумаги), пропитанного испытательным водным раствором, содержащим анионы-активаторы и окислители Кз[Ре(СК)б] и К4[Ре(СК)б] в различных соотношениях, и выдерживания его на поверхности металла в течение некоторого определенного времени. По истечении указанного срока с поверхности металла аккуратно удаляют указанный материал и подсчитывают на нем количество синих пятен, возникших в местах образования питтингов по реакции иона Fe , образующегося в очагах локальной коррозии, с Кз[Ре(СК)б] и K4[Fe( N)e]. Количество синих пятен и является критерием склонности испытуемого материала к питтинговой коррозии.  [c.144]

Изнашивание рубашек валов. Гребные валы в неметаллических подшипниках дейдвудов и кронштейнов, смазываемые водой, для заш,иты от коррозии покрывают рубашками в основном из бронзы или латуни. Опыт эксплуатации морских судов показал, что алюминиевые бронзы и марганцовисто-железистые латуни непригодны в качестве материала для облицовки. Эти сплавы коррозионно-стойки в морской воде благодаря защитному действию первоначально образующихся поверхностных пленок, предохраняющих металл от дальнейшего разрушения. На поверхностях трения эти пленки изнашиваются, и коррозионная стойкость падает. Особенно быстро разрушаются такие компоненты, как алюминий и железо. Из уже ослабленных участков выкрашиваются более стойкие составляющие. В дальнейшем разъединение облицовки приводит к интенсивному изнашиванию рабочей поверхности подшипника.  [c.200]

Распространена ошибочная точка зрения на роль неметаллического покрытия. Считают, что покрытие защищает металл от коррозии, пока оно не повреждено и держится на металле. Это не так, коррозия металла начинается задолго до того, как покрытие разрушилось. С другой стороны, даже с появлением единичных дефектов в покрытии его защитные функции еще сохраняются. На практике лимитирующим фактором непригодности покрытия в большинстве случаев считают отслоение его от подложки и распространение дефекта. При оценке защитных свойств покрытий часто определяют физико-химическую стойкость материала покрытия, а состав металла и его реакции с компонентами проникающей среды не учитывают. Основными изучаемыми характеристиками при таком подходе являются химическая стойкость материала покрытия в коррозионной среде и контроль за перемещением фронта диффундирующей среды в направлении базовой поверхности.  [c.186]


На стадии хлорирования доступные металлы не удовлетворяют требованиям эксплуатации из-за повышенной коррозии. На этой стадии в качестве конструкционного материала используются неметаллические кислотоупоры, в частности, фторопласт-4 [2].  [c.29]

Взаимодействие любого неметаллического материала со средой аналогично коррозии металлов является гетерогенным процессом, отличающимся сложностью и многостадийностью. Основными стадиями его являются перенос (транспорт) компонентов агрессивной среды в место взаимодействия (в реакционную зону) непосредственное взаимодействие компонентов среды с веществами, образующими материал (реакция) отвод (перенос) образовавшихся продуктов реакций из реакционной зоны. Каждая из перечисленных стадий состоит, как правило, из последовательно-  [c.11]

Борьба с коррозией, борьба за экономию цветных металлов и изыскание их полноценных заменителей имеют огро Мное народнохозяйственное значение. К защитному покрытию аппаратуры предъявляются весьма высокие требования. Неметаллический материал должен обладать химической и термической стойкостью, непроницаемостью, механической прочностью и хорошими технологиче-СИИА1И свойства.ми способностью изгибаться, свариваться, сцепляться с цементом, обрабатываться инструментом и т. д. Такого универсального материала, который совмещал бы все эти свойства, до сих пор не найдено. Каждый из известных неметаллических материалов—кислотоупорная керамика, диабаз, фаолит, винипласт, резина, политаобутилен и др.—обладает только частью этих свойств. Поэтому конструкторам и монтажникам часто приходится применять двуслойные и трехслойные покрытия, чтоб-ы рационально сочетать свойства органических и силикатных материалов.  [c.10]

Распространена ошибочная точка зрения на роль неметаллического покрытия. Считают, что покрытие защищает металл от коррозии, пока оно не повреждено и держится на мета1ше. Это не так, коррозия металла начинается задолго до того, как покрытие разр -шилось. С другой стороны, даже с появлением единичных дефектов 3 покрытии его защитные функщш еще сохраняются. На прак-тике лимитирующим фактором непригодности покрытия в большинстве случаев считают отслоение его, от подложки и распространение дефекта. При оценке защитных свойств покрытий часто определяют физико-химическую стойкость материала покрытия, а состав металла и его реаюши с компонентами  [c.46]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Срок службы антикоррозионной бумаги УНИ зависит от ряда факторов, наиболее важными из которых являются тщательность подготовки поверхности металлоизделия к консервации, соответствие упаковочного материала нормативно-технической документации (количество ингибитора в бумаге, физико-механические показатели материала, его влагопрочностьи паропроницаемость), наличие барьерного покрытия и его вид, а также условия последующего хранения и транспортировки. В табл. 27 представлейк средние значения сроков хранения упакованных в антикоррозионную бумагу УНИ металлоизделий в зависимости от вида барьерного покрытия и степени коррозионной агрессивности атмосферы согласно СТ СЭВ Коррозия металлов. Классификация коррозионной агрессивности атмосферы (легкие сроки хранения — Л, средние — С, жесткие — Ж, очень жесткие — ОЖ), применительно к стали и чугуну, стали с неметаллическим неорганическим покрытием, а также стали и чугуну с металлическим покрытием (никелевым, хромовым — без подслоя меди).  [c.108]

Наблюдаемые в структуре материала лопаток карбиды хрома скоагулированы и равномерно распределены по всему полю фис. 6). Металл лопаток сильно загрязнен неметаллическими включениями, что создает благоприят]нле условия для развития точечной коррозии и наблюдаемой при обследовании.  [c.14]

На основании обследования машины в эксплуатационных условиях, условий службы машин, испытаний в производственных и лабораторных условиях можно сделать следующие выводы. Основной причиной разрушения лопаточного материала стали марки 20X13 следует признать процесс эрозии ударами капель воды, а также сильную точечную коррозию, чему способствовало и загрязнение металла неметаллическими включениями.  [c.15]

Для получения покрытий, обеспечивающих коррозионную защиту, наибольшее применение получил органосиликатный материал ВН-30, представляющий собой суспензию измельченных силикатов и оксидов металлов в толуольном растворе полиорга-носилоксанов. Он предназначается для окраски металлических и неметаллических поверхностей (опор контактной сети железных дорог, линий электропередач, металлоконструкций, электрофильтров и газоводов химических предприятий) с целью защиты их от коррозии.  [c.83]

Рассмотрены асе факторы, вызывающие разрушение в различных морских условиях сталей, меди, никеля, алюминия, титана, а также неметаллических материалов, включая полимеры и композиционные материалы на их основе, керамику, изделия из бумаги, текстиль, магнитную ленту. Показано поведение деталей радиоэлектронной аппаратуры, ракетного топлива и взрывчатых веществ. Приведены сведения о скорости коррозии металлов и их сплавов на различных глубинах. Представлен экспериментальный материал, полученный при изучении свыше 20000 образцов сплавов 475 марок при их выдержке в натурных условиях от трех месяцев до трех лет. Описана также коррозия, контролируемая биофакторами, в применении к различным географическим районам.  [c.4]

С чем нельзя без соответствующей изоляции соприкасающихся поверхностей сочетать в конструкции металлы, существенно отличающиеся по величине электрических потенциалов. Не менее важно учитывать использование в конструкциях различных неметаллических материалов, в том числе теплоизоляционных, электроизоляционных и др. Известно, что некоторые из этих материалов, например войлок, асбест, древесина, могут впитывать и удерживать влагу и, таким образом, быть очагами усиленной коррозии. Ряд полимерных материалов, подвергаясь со временем старению, вьщеляют коррозионноактивные агенты, ускоряющие процессы коррозии. Поэтому изоляционные материалы часто пропитывают каменноугольным дегтем или битумом, а применяемые полимерные материаны подвергают специальным исследованиям с целью определения опасности вьщеления агрессивных агентов.  [c.251]



Смотреть страницы где упоминается термин Коррозия неметаллических материало : [c.265]    [c.5]    [c.358]    [c.36]    [c.185]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.150 ]



ПОИСК



Защита от коррозии неметаллических материало

Коррозия бетона, железобетона и других неметаллических материалов

Коррозия металлов и неметаллических материалов

Коррозия металлов и неметаллических материалов в органических кислотах

Коррозия неметаллических материалов

Коррозия неметаллических материалов

Материалы неметаллические

Шта неметаллические



© 2025 Mash-xxl.info Реклама на сайте