Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гистерезис тепловой

Эти особенности существенно отличают магнитное превращение от аллотропического. Типичными для аллотропического превращения являются изменение кристаллической решетки, перекристаллизация и тепловой гистерезис превращения.  [c.59]

В отличие от полиморфного магнитное превращение не связано с изменением кристаллической структуры (перекристаллизацией) и с тепловым гистерезисом превращения.  [c.15]

Следует отметить еще одну особенность процесса при уменьшении теплового потока в режимах с полностью сухой внешней поверхностью иногда удавалось добиться стационарного состояния пористой стенки при тепловой нагрузке, по величине меньшей, чем в предшествовавших режимах с кипящей жидкостной пленкой при увеличении теплового потока до ее высыхания. Можно утверждать, что имеет место своеобразный гистерезис.  [c.149]


Основной особенностью ЭМУ по отношению к объектам машиностроения является большой объем задач анализа совместно протекающих и взаимно обусловленных внутренних физических процессов их работы. При этом основное электромеханическое преобразование энергии сопровождается рядом сопутствующих преобразований — электромагнитным, тепловым, механическим, вибрационным. Решение задач анализа с достаточной для практических целей точностью требует учета реально существующих взаимных связей между названными процессами. Эта особенность является чрезвычайно важной с позиций автоматизации проектирования. Вопросы анализа физических процессов занимают центральное место в принятии проектных решений практически на всех этапах проектирования ЭМУ, что обусловливает внимание к этим проблемам и необходимость их решения. Так, работы по уточнению математических моделей ЭМУ и учету с их помощью все новых эффектов (детальное распределение магнитного поля в воздушном зазоре и магнитопроводе, переходные электромагнитные и другие процессы, явления гистерезиса, вытеснения токов и и Т.Д.), проводимые в течение многих десятилетий, не только не теряют своей актуальности, но и получили новый импульс благодаря 16  [c.16]

Массовая и объемная теплоемкости сырья и продуктов с и ср также не являются термодинамическими свойствами. Их отличие от свойств усугубляется тем, что обычно к теплоте, расходуемой собственно на изменение внутренней энергии продукта, которое проявляется в виде изменения его температуры, добавляют теплоту фазовых превращений. Некоторые из этих превращений происходят по-разному нагревается или охлаждается продукт (явление теплового гистерезиса). Добавление теплоты фазовых превращений резко изменяет эффективное значение с или ср. Для разных продуктов эти скачки происходят при разных температурах, особенно заметны они при замораживании продуктов, Естественно, что при этом добавляется теплота физико-химических превращений и химических реакций. Тем не менее обычно считают, что теплоемкость обладает свойством аддитивности (многочисленные эксперименты подтверждают это).  [c.19]

Коэффициент теплопроводности твердого молочного жира л (рис. 6.8), как и других неметаллических материалов, возрастает с повышением температуры, но не зависит от режима обработки и от йодного числа. Эти факторы начинают влиять на X в процессе плавления отдельных фракций — в режиме нагрева эффективная Я меньше, чем в режиме охлаждения, т. е. наблюдается тепловой гистерезис максимальная разница в Я, составляет 10 % при 0 С. Гистерезис по Я нельзя объяснить только инерционностью системы, поскольку метод циклов предусматривает строгое выдерживание стационарного режима видимо, при плавлении жидкие фракции иначе располагаются в твердом жире, чем при затвердевании.  [c.142]


На рис. 10.20 показана зависимость коэффициента теплоотдачи при кипении от плотности теплового потока. Кривая ОА соответствует режиму пузырькового кипения, кривая Г —режиму пленочного кипения. Точка А определяет критические параметры. Если тепловая нагрузка -превышает критическую, наблюдается резкий переход от пузырькового режима кипения к пленочному, причем теплоотдача резко уменьшается (линия АВ). Однако возврат к режиму пузырькового кипения происходит при значительно меньших тепловых нагрузках (точка Б и линия БД), т. е. опыты обнаруживают гистерезис при переходе от пленочного кипения к пузырьковому.  [c.172]

Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

Созданная в лаборатории высокотемпературной металлографии Института машиноведения установка ИМАШ-22-71 обеспечивает возможность прямого наблюдения, фотографирования и киносъемки микроструктуры, а также рентгеноструктурного анализа и записи изменения электросопротивления металлических образцов при их нагружении и тепловом воздействии. Чтобы расширить пределы нагружения, рабочую камеру установки смонтировали на универсальной 10-т испытательной машине УМЭ-ЮТМ, что позволило проводить испытания в широком диапазоне скоростей деформирования при статическом и низкочастотном знакопостоянном и знакопеременном растяжении—сжатии, при изгибе с заданной амплитудой нагрузки или деформации при автоматической записи петель гистерезиса. На рис. 86 дана принципиальная схема установки. Она включает в себя  [c.155]

Площадь, заключенная на диаграмме а = ст (е) внутри петли гистерезиса, численно равна необратимой удельной энергии (работе), превращающейся при выполнении каждого цикла деформации в тепловую энергию. Отставание деформаций от напряжений и порождаемая им петля упругого гистерезиса связаны с так называемым внутренним трением материала. В главе XVH при рассмотрении упругих колебаний систем показано, что наличие петли гистерезиса, порожденной внутренним трением, является причиной затухания свободных колебаний и стабилизации величин амплитуд вынужденных колебаний в районе резонанса. При каждом цикле колебания происходит поглощение удельной работы, равной площади, заключенной внутри петли гистерезиса. С этой точки зрения,  [c.153]


Пузырьковое кипение чистых фреонов на горизонтальной трубе. Кривые зависимости а=/ q) для фреонов в области пузырькового кипения могут быть разделены на три области (рис. 1). При переходе от свободного движения к кипению и обратно наблюдается гистерезис, что отмечалось в работах [13, 15, 18, 22, 23, 31 и др.]. В [17] на основании экспериментальных данных предложена формула для температурного перепада, соответствующего возникновению кипения при постепенном увеличении Ai от 0° С, в [1, 29] — для теплового потока отвечающего прекращению кипения при постепенном уменьшении q от q , соответствующего развитому кипению. В [24] наблюдалось затягивание начала кипения Ф-12 до А<=20° С при —32° С (р=0.92) и до А<=3.5° С при < —10° С (р=4.2), в [31] - для Ф-21 А =24°С при < =20° С (р = 1.53).  [c.212]

Стеклянные меры хрупки и имеют повышенный тепловой гистерезис, что требует осторожности при их использовании. После нагревания на А т и последующего охлаждения стеклянный брусок не возвращается к своей первоначальной длине, а принимает длину [7]  [c.196]

Температурный гистерезис регенератора 287 Тепловая нагрузка теплообменных аппаратов и отопительных систем 329, 331  [c.541]

Таким образом, имеет место определенный гистерезис в тепловых и гидродинамических явлениях, связанных с переходом от одного режима кипения к другому. Приходится говорить о двух критических плотностях теплового потока первой q pu при которой  [c.333]

Таким образом, четко вырисовывается своеобразный гистерезис в тепловых н гидродинамических явлениях, связанных с переходом от одного режима кипения к другому.  [c.92]

Электротехническую сталь маркируют цифрами (ГОСТ 21427—75). Первая цифра определяет структуру и вид прокатки горячекатаная изотропная (1), холоднокатаная изотропная (2) и холоднокатаная анизотропная с ребровой текстурой в направлении 1100] (3). Вторая цифра указывает содержание в стали кремния 0 — до 0,4% 1—0,4—0,8% 2 — 0,8 — 1,8 % 3 — 1,8—2,8 % 4 — 2,8—3,8 % 5 — 3,8—4,8 %. Третья цифра определяет потери на гистерезис и тепловые потери. Четвертая цифра — код числового значения нормируемого параметра. Чем цифра больше, тем меньше удельные потери Р ,5/5о.  [c.370]

Спонтанное изменение формы на стадиях а—в описано ниже, однако можно отметить, что оно обусловлено промежуточным фазовым превращением, тепловой гистерезис этого превращения мал, изменение формы является обратимым. Далее, если образцы погрузить в ледяную воду, то они изгибаются в обратном направлении, выпуклость снизу (рис. 2.36, г). При дальнейшем охлаждении до —40 °С в смеси метилового спирта и сухого льда на следующей стадии (рис. 2.36, д) образцы изгибаются под углом 45° в противоположном направлении по отношению к начальной стадии а. Если вновь перенести образцы в кипящую воду, то образцы мгновенно принимают форму, показанную на рис. 2.36, е, эта форма полностью совпадает с формой образцов на начальной стадии. Далее следует отметить, что обратимое изменение формы цикли-  [c.90]

Для случая циклического упругопластического деформирования, как известно, диаграмма деформирования в координатах усилие—деформация представляет собой петлю пластического гистерезиса (рис. 3.7, в). При регистрации в этом эксперименте диаграммы изменения температуры с изменением прикладываемой нагрузки также имеет место своеобразная температурная петля (рис. 3.7, б), участки уменьшения и роста температуры которой соответствуют периодам нагружения, зарегистрированным на диаграмме деформирования (рис. 3,7, а). В данном случае (пренебрегая отводом тепла в теплоизолированные захваты установки) имеют место два тепловых процесса. Это, во-первых, линейное по  [c.66]

Характер изменения ширины петли гистерезиса (величины циклической пластической деформации б) представлен на рис. 3.11, а, из которого видно, что, оставаясь в первые циклы нагружения практически постоянной, в последующем величина возрастает. Увеличивается также и площадь петли гистерезиса, что соответствует увеличению затрачиваемой механической энергии Л у в отдельных циклах нагружения (рис. 3.11, б). С ростом затрачиваемой в цикле механической энергии Аг увеличивается и доля тепловой энергии в каждом цикле ,v, а также величина поглощенной энергии являющаяся разностью двух первых. Как видно из рисунков, характер изменения и Еу подобен изменению и с увеличением в циклах величины А соответственно возрастают также и Кривые изменения полной механической энергии А, затраченной на процесс циклического деформирования, а также полной тепловой энергии выделившейся при этом, и полной энергии поглощенной материалом, представлены на  [c.73]

Вследствие теплового гистерезиса превращения при нагреве и охлаждении проходят при разных температурах. Поэтому для обозначения критических точек при нагреве и охлаждении используют дополнительные индексы буквы с в случае нагрева и г в случае охлаждения. Например, Ас,, A j, Afj, Afj.  [c.433]

Титанат алюминия образуется в системе AljOg—TiOj при эквимолекулярном соотношении компонентов. Его средний ТК расширения в интервале температур 100—700 °С составляет (0,08—0,20) 10" °С , при этом наблюдается гистерезис теплового расширения.  [c.359]

Во-первых, магнитные свойства постепенно падают по мере приближения к точке превращения, и эта точка не отвечает скачкообразному изменению свойств. Во-вторых, магнитное превращение не имеет температурного гистерезиса. Увеличение скорости охлал<дения не снижает температуры превращения. В-третьих, механические и некоторые физические свойства при превращении не изменяются (изменяются многие электрические магнитные и тепловые свойства). Наконец, в-четвертых, самое важное магнитное превращение не сопровождается перекристаллизацией— образованием новых зерен, и изменением решетки.  [c.59]

Повышенные температуры наблюдаются не только в тепловых машинах, у которых нагрев является следствием рабочих процессов. В холодных машинах нагреваются механизмы, работающие при высоких скоростях и больших нагрузках (зубчатые передачи, подшипники, кулачковые механизмы и т. д.). Детали, подверженные циклическим нагрузкам, греются в результате упругого гистерезиса при многократно повторных циклах нагружения-разгруженпя. Повышение температуры сопровождается изменением линейных размеров деталей и может вызвать высокие Напряжения.  [c.360]


Газ-носитель 297, 299 Газоанализатор магнитный 293 масс-спектроскопический 294 оптический 293 тепловой 293 химический 293 Генеральная совокупность 38 Генерирующее соотношение 124, 126 Гетерофазная среда 237 Типертермопара 175 Гипотезы статистические 104 Гистерезис 156 Голограмма 233 Голография 217, 232 Границы доверительные 104  [c.355]

Эта величина не должна зависеть от режимных параметров процесса, его направления (нагрев или охлаждение). Теплоемкость за счет фазовых превращений Сф, наоборот, может зависеть от этих параметров. Надо полагать, наличие гистерезиса на кривых с (1) (рис. 6.8) определяется не только физико-химическими, но и тепловыми факторами — перегревом триглицеридов при плавлении и переохлаждении при отвердевании из-за необходимости переноса теплоты через низкотеплопроводный материал — при нагревании пик смещается в сторону больших температур, т. е. гистерезис связан главным образом с теплоемкостью за счет фазовых превращений.  [c.148]

Обратный переход от пленочного кипения к пузырьковому совершается при существенно меньших значениях плотности теплового потока <7кр2 (гистерезис на кривой кипения).  [c.61]

В реальных условиях нагрева и охлаждения превращение совершается не при постоянной температуре, а в некотором интервале температур, который оказывается тем шире, чем больше скорость нагрева или охлаждения. Для полиморфного превэащения характерно наличие теплового гистерезиса в отличие от магнитного превращения, у которого он отсутствует.  [c.51]

Критические точки, соответствующие температурам превращения, указаны на диаграмме /li(727° ) точка Аз, понижающаяся с увеличением содержания углерода по линии GS и точка Лс , изменяющаяся по линии SE. Смещение критических точек относительно температур, соответствующих равновесному состоянию сплавов, происходящее вследствие теплового гистерезиса, в реальных условиях нагрева и охлаждения условно обозначакзт так A i, Асз — при нагреве, Аг- , Аг — при охлаждении. Для практики термической обработки стали изучение механизма и кинетики образования аустенита имеет большое значение, поскольку превращение аустенита при  [c.112]

Tot, при которбМ этот реЖиМ сменяется пленочным кипением. На рис. 7-6 этому обратному переходу соответствует точка Б. Таким образом, имеет место гистерезис Б тепловых и гидродинамических явлениях, связанных с переходом от одного режима кипения к другому.  [c.197]

Явление г и с т е р е з и-с а. При построении зависимости а=/(<7) в условиях повышения плотности теплового потока появление первых паровых пузырей и переход к развитому кипению происходят при более высокой плотности теплового потока по сравнению с ее значением, отвечающим прекращению процесса кипения дак при проведении опыта в обратном направлении. В связи с этим в интервале значений q между и <7нк коэффициенты теплоотдачи в первом случае (опыт с повышением q) оказываются меньше, чем во втором. Это объясняется тем, что при переходе от низких к более высоким плотностям теплового потока не все центры парообразования соответствующего радиуса кривизны (при данном перегреве жидкости) оказываются активными. Часть из них еще заполнена жидкостью и не может генерировать паровую фазу. При переходе от высоких значений q к более низким практи-чески все центры, соответствующие данному температурному напору, являются активными. Рассмотренное явление получило название гистерезиса по тепловому потоку. На рис. 7.4 и 7.5 представлены опытные данные, полученные при кипении фреона-22 на никелевой трубке [39] и при кипении неона на платиновой проволоке. В последнем случае опытные данные представлены в виде зависимости плотности теплового потока от температурного напора At=t -r— н. Из риснунков видно, что коэффициенты теплоотдачи на нижней ветке петли гистерезиса могут быть в два (и более) раза ниже, чем на верхней. Это всегда следует учитывать при обобщении опытных данных, полученных в переходной области.  [c.193]

Осум — суммарная удельная, необратимо поглощенная материалом энергия циклических деформаций q- — суммарная удельная тепловая энергия, выделенная деформируемым объемом в результате само-разогрева и рассеянная в окружающую среду за счет теплообмена. Необратимо поглощаемая энергия циклических деформаций определяется по параметрам петель гистерезиса.  [c.58]

Действительная динамика исследовалась электронным тензо-метрированием с использованием проволочных датчиков сопротивления R = 192,4) с базой 20 мм, наклеивавшихся попарно под углом 45 " к осям кулачкового и ведомого валов с диаметрально противоположных сторон валов (по 4 датчика на каждый вал для компенсации тепловых и изгибных влияний). Сигналы, появлявшиеся за счет изменения сопротивлений при скручивании валов, через токосъемники подавались на усилитель ТУ6М , а затем на шлейфы осциллографа Н-700 и регистрировались на фотобу-мажной ленте. Систематически проводившаяся с помощью образцового динамометра ДОСМ-1 тарировка осциллографических записей моментов, возбуждаемых на ведомом и кулачковом валах, показала их линейность при полном отсутствии гистерезиса. Первая серия экспериментальных исследований УКМ с силовыми пагружателями (грузовыми, пружинными) подробно описана в монографии [10].  [c.182]

Даже после того, как были даны пояснения по поводу многих внешних источников демпфирования, все еще остается очень большое число механизмов, с помощью которых энергия при колебаниях может поглощаться внутри некоторого малого элемента материала при его циклическом демпфировании. Мы не станем пытаться объяснить все эти механизмы, а остановимся на некоторых из них, представляющихся наиболее существенными. Эти механизмы приведены в табл. 2.1 [2.14] для тех диапазонов частот и температур, в которых они, как правило, наиболее эффективны. Все рассмотренные здесь маханизмы связаны с внутренними перестройками микро- или макроструктур, охватывающими диапазон от кристаллических решеток до эффектов молекулярного уровня. Сюда входят магнитные эффекты магнитоупругий и магнитомеханический гистерезис), температурные эффекты (термоупругие явления, теплопроводность, температурная диффузия, тепловые потоки) и перестройка атомарной структуры (дислокации, локальные дефекты кристаллических решеток, фотоэлектрические эффекты, релаксация напряжений на границах зерен, фазовые процессы, учитываемые в механике твердого деформируемого тела, блоки в по-ликристаллических материалах и т. п.) [2.15—2.18].  [c.77]

Сравнивая величину относительного теплового натяга, возникающего в соединении, с величиной относительной деформации конструкционных металлов и сплавов, соответствующей появлению в них пластического течения, можно показать, что при значительной разнице коэффициентов теплового расширения металла и керамики металл в охлажденном спае находится в пластическом, а не в упругом состоянии. В результате этого при циклическом охлаждении и нагреве таких соединений имеет место термомеханический гистерезис, сопровождающийся изменением знака напряжений в спае. При охлаждении и последующем нагреве керамикометаллического узла, в котором металл охватывает керамику, может произойти разрушение спая, если будет иметь место соотношение  [c.110]

При независимом задании теплового потока (напр., при прохождении электрич. тока или радиац. обогреве) наблюдается неоднозначная зависимость ДУ от (гистерезис темп-ры), вызвавнан тем , что тепловой поток в условиях наступления первого кризиса К. больше, чем тепловой поток в условиях второго кризиса К.  [c.366]

Дилатометрический метод очень чувствителен, и те превращения, которые из-за малого теплового эффекта почти не различимы на термических кривых, часто легко определяются этим методом. Основной недостаток термического анализа для исследования превраш ений в твердом состоянии — гистерезис, в результате которого превраш ение при нагревании происходит намного выше, чем при охлаждении. Теоретически этот недостаток может быть полностью устранен цри использовании дилатометра, так как каждый образец может быть выдержан при любой температуре в течение времени, достаточного для достижения равновесия (до того, как будет проведено измерение). Однако, если нужно исследовать большое число образцов, практически это часто бывает невозможно, и обычным процессом, как мы указывали, является снятие дилатометрических кривых при определенных скоростях нагрева и охлаждения. Эти скорости могут быть намного меньше, чем самые малые скорости, используемые при обычном термическом анализе, и в резул1ьтате можно достичь более полного приближения к ус-  [c.292]


Поскольку при нагреве и охлажцении сплавов с реальными скоростями фазовые превращения в твердом состоянии протекают со значительным тепловым гистерезисом, следует отличать критические температуры при нагреве сплава от аналогичных температур при его охлаждении.  [c.129]

Пузырьковый режим. Пузырьковый режим кипения отличается высокой интенсивностью теплоотдачи при сравнительно небольших температурных напорах (опытные данные по кипению воды приведены на рис. 3.19). Теплоотдача не зависит от сил тяжести, формы поверхности нагрева и ее размера, если она остается гораздо больше отрывного диаметра пузыря, который при атмосферном и более высоких давлениях не превышает 2 мм. С ростом давления р коэффициент теплоотдачи а увеличивается. В области низких давлений (для воды р < 2 10 Па) кипение приобретает особенности — возникают значительные перегревы жидкости, работа центров парообразования отличается крайней нерегулярностью, процесс роста паровых пузырей, размеры которых в момент отрыва достигают 10—100 мм, носит взрывообразный характер. Это приводит к заметным колебаниям температуры поверхности нагрева и большим выбросам кипящей жидкости. Помимо давления, режимных параметров (задаваемое на поверхности нагрева значение Т или q свойств жидкости на процесс заметное влияние оказывают материал и толщина греющей стенки, а также такие трудно контролируемые факторы, как условия смачиваемости на поверхности нагрева и ее микрошероховатость. Эффекты, обусловленные свойствами поверхности нагрева, обычно проявляются одновременно, что еще больше затрудняет их учет. Для пузырькового кипения характерно явление гистерезиса. Если сначала увеличивать тепловую нагрузку, последовательно проходя ряд стационарных режимов кипения, а после достижения некоторого q < q - начать ее уменьшать, то кривые q (Д Т), полученные при увеличении и уменьшении нагрузки, не совпадут, причем более высокой оказывается теплоотдача при обратном ходе. В силу указанных факторов опытные данные по теплоотдаче при пузырьковом кипении имеют значительный разброс.  [c.233]


Смотреть страницы где упоминается термин Гистерезис тепловой : [c.397]    [c.142]    [c.236]    [c.207]    [c.303]    [c.115]    [c.196]    [c.289]    [c.161]    [c.50]    [c.185]    [c.146]    [c.133]   
Теория термической обработки металлов (1974) -- [ c.123 ]



ПОИСК



Гистерезис

Гистерезис тепло

Гистерезис тепло



© 2025 Mash-xxl.info Реклама на сайте